资源描述:
《数独的直观式解题技巧》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数独的直观式解题技巧一、唯一解法前言 直观法的根本是基础摒除法,唯一解法其实只可算是基础摒除法的特例,只因其成立条件十分特殊明确,可以几乎不花脑筋就填出解来,所以特别独立为一法,但有些人是完全不加理会的。唯一解详说 当数独谜题中的某一个宫格因为所处的列、行或九宫格已填入数字的宫格达到8个时,那么这个宫格所能填入的数字,就只剩下那个还没出现过的数字了。当某列已填入数字的宫格达到8个时,所剩宫格唯一能填入的数字就叫做列唯一解;当某行已填入数字的宫格达到8个时,所剩宫格唯一能填入的数字就叫做行唯一解;
2、当某个九宫格已填入数字的宫格达到8个时,所剩宫格唯一能填入的数字就叫做九宫格唯一解。 <图1>(5,9)出现列唯一解6了<图1>是出现列唯一解的例子,请看第5列,由(5,1)~(5,8)都已填入数字了,只剩(5,9)还是空白,此时(5,9)中应填入的数字,当然就是第5列中还没出现过的数字了!请一个个数字核对一下,哦!是数字6还没出现过,所以(5,9)中该填入的数字就是数字6了,这时我们说:(5,9)有列唯一解6。 <图2>(7,1)出现行唯一解9了<图2>是出现行唯一解的例子,请看第1行,除了宫
3、格(7,1)外都已填入数字了,此时(7,1)中应填入的数字,当然就是第1行中还没出现过的数字9了!这时我们说:(7,1)有行唯一解9。 <图3>(7,2)出现九宫格唯一解3了<图3>是出现九宫格唯一解的例子,请看下左九宫格,除了宫格(7,2)外都已填入数字了,此时(7,2)中应填入的数字,当然就是下左九宫格中还没出现过的数字3了!这时我们说:(7,2)有九宫格唯一解3。仔细想想:以上的列唯一解其实也可看成是列摒除解、行唯一解也可看成是行摒除解、九宫格唯一解也可看成是九宫格摒除解,不是吗?不过9个
4、宫格已填了8个,这样的情况太特殊、太容易辨认了,所以独立出来也无可厚非啦!结语 使用直观法时,大部分的时间应该都在使用基础摒除法,尤其是刚开始解题时,唯一解法应该不太会有应用的机会,但随着填入的数字越来越多,唯一解法上场的机会就越来越高了。虽然玩家也可以完全以摒除法系统性的寻找题解,不过这么特殊、容易辨认的情况出现了,而不去理会,也未免太可惜啦!二、唯余解法前言 唯余解法的原理十分简单,但是在实际的解题中,非常不容易辨认。由于唯余解非常不容易辨认,所以一般的报章杂志及较大众化的数独网站,通常会将
5、需要用到唯余解法的数独谜题归入较高的级别。但另一种以候选数法为分级根据的网站,则会把这类的谜题放到较低的级别中。唯余解详说 当数独谜题中的某一个宫格,因为所处的列、行及九宫格中,合计已出现过不同的8个数字,使得这个宫格所能填入的数字,就只剩下那个还没出现过的数字时,我们称这个宫格有唯余解。<图1>(8,6)出现唯余解了<图1>是出现唯余解的例子,请看(8,6)在的第8列,共出现了2、8、1、6、5、3六个数字;接下来再看(8,6)所在的第6行,共有2、4、9三个数字;而(8,6)所在的下中九宫格
6、,还包含了1、6、2三个数字;所以(8,6)所处的列、行及九宫格中,合计已出现过1、2、3、4、5、6、8、9共8个不同的数字;依照数独的填制规则,同一列、同一行及同一个九宫格中,每一个数字都只能出现一次,所以(8,6)就只能填入尚未出现过的数字7了;这时我们说:(8,6)有唯余解7。<图2>如果你学过候选数法,应该可以看出来:直观法中的唯一解法及唯余解法,在候选数法中就是最简易的唯一候选数法,但在直观法中,这两种方法是有着很大不同的。唯一解法的判定一样十分简单,某行、某列或某个九宫格已被填了8
7、格时,就是唯一解法;但唯余解法却十分难以辨认,<图2>中,使用基础摒除法已找不到解了,只好找寻唯余解,而谜题中共有两个唯余解,请你找找看,看是否可以找到!当你把鼠标移到图块上时,会显示出其中的一个:在(1,6)有唯余解3,另一个唯余解5则出现在在(3,1)。不容易找到吧!所以一般的报章杂志及较大众化的数独网站,通常会将需要用到唯余解法的数独谜题归入较高的级别。结语 使用直观法时,大部分的时间应该都在使用基础摒除法,但有些较困难的数独题目,不时会出现以基础摒除法将找不到解的情况,这时就是唯余解法上
8、场应用的机会了,不过随着填入的数字越来越多,需要唯余解法上场的机会就越来越低了。虽然在候选数法玩家的眼中,需要应用越多次唯余解法的数独题目,就和拿着大关刀切菜一般简单。但需要应用越多次唯余解法的数独题目,在直观法玩家的眼中真是恶魔啊!三、直观式解题法解简易级范例概说 对大部分的数独初学者来说,什么叫做不用猜测,完全以逻辑方法得出解答,是最不容易理解且做到的事。虽然我们已说明了直观式解题所常用的技巧,但要如何应用,可能仍有人不太明了!运用网页为媒介的最大优势就是不受篇幅的限制,真的是想要怎么表达,