红外探测器正瞄准长波长应用

红外探测器正瞄准长波长应用

ID:10104270

大小:58.33 KB

页数:3页

时间:2018-05-25

红外探测器正瞄准长波长应用_第1页
红外探测器正瞄准长波长应用_第2页
红外探测器正瞄准长波长应用_第3页
资源描述:

《红外探测器正瞄准长波长应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、红外探测器正瞄准长波长应用得益于来自人眼杆状细胞方面的灵感,聚焦载流子增强传感器实现了将大面积高效吸收层与纳米探测机制相结合。红外光谱通常能提供超出人眼视觉范围的观察能力。红外探测器已在许多应用中发挥着重要作用,特别是在从不同角度观察物体的较不明显特征方面,红外探测器已经成为不可或缺的工具。人们对红外探测技术的研究从未止步,研究人员始终在尝试使用更多的材料来探索不同的红外探测方法[1]。红外探测技术方面取得的稳步进展不断要求更好、更灵敏的探测器来满足应用需求,甚至需要终极的光子传感器——单光子探测器。单光子探测器(SPD)是一种超低噪声器件,

2、增强的灵敏度使其能够探测到光的最小能量量子——光子。单光子探测器可以对单个光子进行探测和计数,在许多可获得的信号强度仅为几个光子能量级的新兴应用中,单光子探测器可以一展身手。利用类似于人眼杆状细胞的光探测机理,美国西北大学和伊利诺斯州大学的研究小组已经开发出了红外单光子聚焦载流子增强传感器(FOCUS)。该装置有望在生物光子学、医学影像、非破坏性材料检查、国土安全与监视、军事视觉与导航、量子成像以及加密系统等方面取得广泛应用。红外探测的挑战红外探测器面临的最大挑战在于创建一个具有足够高信噪比的装置。为做到这一点,探测器应当具有以下特点:能够有

3、效地吸收某一特定波长的光、噪声能量应当低于信号能量、能够与具有类似低噪声特性的读出电子元件相耦合。对于红外单光子探测器来讲,这些要求更具挑战性,因为单光子的信号能量小于1阿焦(1阿焦=10-18焦),将波长增加到长波红外(LWIR)以及远红外(FIR)波段后,单个光子具有的能量会更低,这会引发更多的问题。此外,如果要在任何波段实现有效吸收,必须要求吸收层(垂直于光传输方向)的宽度与所吸收的特定波长相当。因此,在长波红外和远红外波段,器件的尺寸在几微米到几十微米的尺度内。然而,要想将电子噪声降到低于光子能量,器件的尺寸要降到纳米尺度。由于单光子

4、能量极低并且波长较长,这使得低噪声、高效率的长波红外单光子探测器的制作非常困难。源自人眼杆状细胞的灵感随着人们对单光子红外探测器的不懈研究,目前已经出现了专门的p-i-n探测器、雪崩光电探测器(APD)、单电子晶体管探测器以及超导(边缘转换)探测器。在这些探测器中,雪崩光电探测器是无需低温冷却的固态单光子探测器的首选。但是,兼容红外的雪崩光电探测器面临许多问题,包括由雪崩增益统计性质导致的噪声增长、随机触发的后脉冲、以及在所需的强电场下隧穿造成的暗电流的增长[2]。因此,雪崩光电探测器的应用仅限于一些同步系统,并且这些系统具有特别的猝熄电路,

5、允许在极短的时间内施加高击穿电压。图1.该图为聚焦载流子增强探测器(FOCUS)装置的扫描电子显微成像以及横截面图,显示了极为灵敏的纳米注入区以及大面积的厚吸收体积。为了克服固态单光子探测器所面临的问题,研究小组从本质上对现有的单光子探测器进行了研究。由于具备一种称为杆状细胞的特定光敏细胞,使人眼具有探测单光子的能力[3]。杆状细胞对弱光下的灰度视觉十分敏感,这主要是因为它们富含一种叫做视网膜紫质的特殊分子[4]。杆状细胞的结构以及视网膜紫质在细胞中的排列能够提供庞大的吸收体积,进而能够有效地俘获光子。此外,视网膜紫质分子与其他一系列催化剂和

6、信使分子一起,在信号被神经系统的噪声降质之前的放大过程中,发挥着重要作用。研究人员试图复制这种人类视觉系统的工作原理,来实现有效的单光子探测。FOCUS系统开发尽管纳米尺度特征可以提供诸如超低电容以及量子效应等有吸引力的特性,但它们的填充因子较低,从而妨碍了其对光进行有效的吸收。FOCUS传感器除了具有纳米尺度的传感特征外,还利用较大的吸收体积来模仿杆状细胞的结构进行工作(见图1)。FOCUS的工作原理是在电子领域复制人眼杆状细胞的工作机理:当施加适当偏压时,FOCUS纳米注入区内的电子在内部电场的作用下,将向大面积的吸收区运动。然而,在纳米

7、注入区的末端会形成势垒阻碍电子的这种运动,并且会挡住大多数电子。当一个光子入射到大面积的厚吸收区时,它将以极高概率产生一个电子-空穴对,空穴在内建电场的作用下会立即被吸引到纳米注入区。当光激发的空穴到达纳米注入区时,将导致势垒降低。由于纳米势垒的电容极低,所以它对总电荷的任何变化都极为敏感,即便只有一个额外的空穴,电压也会显著降低。势垒的降低将允许更多的电子到达吸收区,并且随着电势的改变,注入电子的数量会呈指数增长。因此,如果具有适当的内部增益机理和能带结构,FOCUS在俘获到一个单一光子的情况下,就能使注入电流发生显著改变。器件制作与实验结

8、果研究人员采用三维非线性有限元方法(FEM)进行数值模拟,来设计层结构和FOCUS器件架构,然后,采用金属有机化学气相沉积的方法生长外延层,利用电子束刻蚀的方法构造

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。