Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown

Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown

ID:81816729

大小:848.93 KB

页数:23页

时间:2022-06-27

上传者:U-14522
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第1页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第2页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第3页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第4页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第5页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第6页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第7页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第8页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第9页
Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown_第10页
资源描述:

《Large Anharmonic Effects on Tunneling and Kinetics The Reaction of Propane with Muonium - Gao et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

S1SUPPORTINGINFORMATIONApril22,2021LargeAnharmonicEffectsonTunnelingandKinetics:TheReactionofPropanewithMuoniumLuGemGao,1DonaldG.Fleming,2DonaldG.Truhlar,3andXuefeiXu1,*1CenterforCombustionEnergy,DepartmentofEnergyandPowerEngineering,andKeyLaboratoryforThermalScienceandPowerEngineeringofMinistryofEducation,TsinghuaUniversity,Beijing100084,China2TRIUMFandDepartmentofChemistry,UniversityofBritishColumbia,Vancouver,3DepartmentofChemistry,ChemicalTheoryCenter,andMinnesotaSupercomputingInstitute,UniversityofMinnesota,Minneapolis,Minnesota55455-0431,UnitedStatesCorrespondingAuthorE-mail:xuxuefei@tsinghua.edu.cn(XX)ContentsModelChemistrySelectionS2AnharmoniccalculationsofZPEatstationarypointsforH+C3H8S3AnharmoniccalculationsofZPEatstationarypointsforMu+C3H8S4AnharmoniccalculationsofZPEalongthereactionpathsS7AnharmoniccalculationsofpartitionfunctionsS11VariationaleffectsandrecrossingtransmissioncoefficientsS12TunnelingtransmissioncoefficientsS13FinalcalculatedrateconstantsS15AcomparisonofKIEsofX+i-C3H8pathcalculatedwithdifferentscalingfactorsS16SoftwareandcomputationaldetailsS17CartesiancoordinatesofoptimizedstructuresS18ReferencesS21

1S2ModelChemistrySelectionTableS1.Barrierheights(inkcal/mol)ofthreereactionpathscalculatedwithvariousmodelchemistriesandthemeanunsigneddeviations(MUD)fromthebenchmark‡‡‡MethodViVn1Vn2MUDM08-SO/ma-TZVPP8.3011.1610.611.72M08-SO/jun-cc-pVTZ8.4011.2310.701.63M08-SO/ma-TZVP8.5911.2010.681.58M08-SO/def2-TZVP8.7711.3410.781.44M08-HX/ma-TZVPP11.6711.6711.181.29M08-HX/jun-cc-pVTZ9.2211.6311.141.08M08-HX/ma-TZVP9.2111.6911.211.04M08-HX/def2-TZVP9.4211.8711.340.86M06-2X/def2-TZVP10.3013.0012.590.22M06-2X/ma-TZVPP10.2512.9312.530.16M06-2X/jun-cc-pVTZ10.2512.9012.510.15M06-2X/ma-TZVP10.1912.9012.520.13bUCCSD(T)-F12b/cc-pVDZ-F12a10.0912.7312.400.00aAllenergiesarerelativetotheenergiesofreactants.Theseareclassicalbarrierheights,i.e.,ZPEisnotincluded.bThebenchmarkcalculatedbyLaudeetal.1

2S3AnharmoniccalculationsatstationarypointsforH+C3H8TheanharmonicZPEsarecalculatedbythehybrid,2degeneracy-corrected,3second-order4,5,6vibrationalperturbationtheory(HDCVPT2).Thismethodincludesvibrationalanharmonicitybyusingdegeneracy-correctedperturbationtheorytoincludetheeffectcubicforceconstantskijkandquarticforceconstantskijkl,withtheeffectofquadraticforceconstantskijincludedinthezero-orderHamiltonian.TheHDCVPT2calculationswerecarriedoutinthecaseofH+C3H8bytwodensityfunctionalmethodstoallowacomparison;inparticularweusedB2PLYP7/def2-TZVP8andDSDPBEP869/def2-TZVP.ThecalculatedanharmonicandharmonicZPEs,theratio(?Anh)ofanharmonicZPEtoharmonicZPE,andtheSRPscalingfactorsforthefrequenciesofthestationarypointsofH+C3H8reactionsaregiveninTableS2.TableS2.Zero-PointEnergies(inkcal/mol)andScalingFactorsforC3H8,i-TS_H,n1-TS_Handn2-TS_H,where“_H”denotesthereactionwithHatomC3H8i-TS_Hn1-TS_Hn2-TS_HB2PLYP/def2-TZVPZPE(HO)65.24063.43263.63463.602ZPE(Anh)64.35362.27962.55062.515Anh0.9860.9820.9830.983ZPEAnhHaSRP=λλ0.9730.9680.9690.969DSDPBE86/def2-TZVPZPE(HO)65.23663.44163.64063.627ZPE(Anh)64.34562.32062.45862.462Anh0.9860.9820.9810.982ZPEAnhHaSRP=λλ0.9730.9690.9680.968aSeeEq.(1)inthearticleproper.

3S4AnharmoniccalculationsatstationarypointsforMu+C3H8TheHDCVPT2calculationsgiveunphysicallylargefrequenciesfortheMu-HvibrationsatallthreesaddlepointsoftheMu+C3H8reaction–almostafactoroftwolargerthanthecorrespondingharmonicfrequencies.Thisisnotcausedbythemodelchemistries,sincethetwomodelchemistries(B2PLYP/def2-TZVPandDSDPBEP86/def2-TZVP)wetestedgivesimilarresults.Therefore,weconcludethatitisduetotheinadequacyofsecondorderperturbationtheoryfortheanharmonicityofthisvery-high-frequencymode.Therefore,weusedadifferentmethodtocalculatethe?AnhvaluesfortheMu+C3H8reaction.FirstweinactivatedtheMu-HvibrationmodeintheHDCVPT2calculations.Thisisaccomplishedbyusingthekeywordreddim=inactive=nintheGaussianprogram,wherendenotesthenumberofinactivenormalmodes.WiththeMu-Hvibrationselectedasmodei,theeffectofthiskeywordisthatthecontributionsofkiii,kiiii,andkiiijareremovedfromtheHDCVPT2calculation,butthecontributionsofkiij,kijk,kiijkandkijklarestillconsidered,where?≠?,?≠?,and?≠?.ThefrequencyoftheinactivemodegivenintheHDCVPT2outputistheharmonicfrequency,andtheZPEofthisinactivemodeiscalculatedintheharmonicapproximation.Asaresult,theinactivemodeistreatedintheharmonicoscillatorapproximationintheHDCVPT2calculations,butthecouplingbetweenthisinactivemodeandtheothersismaintained.WedenotethetotalanharmonicZPEgivenintheHDCVPT2outputasZPE´(Anh).ThusZPE´(Anh)includesanharmonicityofallmodesexceptfortheMu-Hstretchingmode.ThefinalZPEthatincludesanharmonicityofallmodes(includingMu-Hstretchingmode)isdenotedasZPE(Anh).WeobtainZPE(Anh)byreplacingthecontributionofMu-Hmode(whichisharmonicinZPE´(Anh))bytheanharmonicZPEoftheMu-Hmode:ZPE(Anh)=ZPE´(Anh)–ZPE(Mu-H,HO)+ZPE(Mu-H,Anh)(S1)whereZPE(Mu-H,HO)andZPE(Mu-H,Anh)denoterespectivelytheZPEoftheMu-HstretchingmodecalculatedintheharmonicoscillatorapproximationandtheZPEoftheMu-Hstretchingmodecalculatedanharmonically.Theharmonictermise,Mu-HZPE(Mu-H,HO)(S2)2whereωe,Mu-HistheharmonicfrequencyoftheMu-Hvibrationmode.TheanharmonicZPEofMu-Hstretchingmode,ZPE(Mu-H,Anh),isobtainedbymultiplyingitsharmonicZPEbyascalingfactor?Mu−H:

4S5Mu-HZPE(Mu-H,Anh)ZPE(Mu-H,HO)(S3)andweusetheMorseapproximationproposedpreviously10(forthereactionbetweenMuandCHMu−H4)tocalculate?.NextwereviewthisMorseapproximation.TheenergylevelsofaMorseoscillatorare1111()neen1xn(S4)22wherenisthevibrationalquantumnumber,ωeistheharmonicvibrationalfrequency,xeistheanharmonicityconstantgivenbyxDee4e(S5)andDeistheequilibriumdissociationenergy.Notethat?(?=0)isanothernamefortheZPE;notealsothatthisiscalled?Ginthearticleproper.TheanharmonicZPEcanbeexpressedas1xxeeZPEe11ZPEHO(S6)222wherethesubscriptHOdenotesthevalueforthecorrespondingharmonicoscillator.FortheH2molecule,whichhasonlyonevibrationalmode(correspondingtoH-Hstretching),theMorseapproximationtoitsanharmonicZPEcanbewritteninthisformasx(H-H)eZPE(H-H)1ZPEHO(H-H)(S7)2sotheanharmonicityconstantforH-HstretchingcanbecalculatedasZPE(H-H)xe(H-H)21(S8)ZPE(H-H)HOwhereZPEHO(H-H)istheZPEofH2calculatedinharmonicapproximation.ThevalueweusedforZPE(H-H)is6.21kcal/mol.12TheanharmonicityconstantoftheMu-Hstretchingcanbeobtainedby13H2xx(Mu-H)(H-H)(S9)eeMu-H

5S6UsingEq.(S6),?Mu−HiscalculatedbysubstitutingthisintoMu-Hxe(Mu-H)1(S10)2Consideringtheconsistencyoftheperformancebytwomodelchemistriesduringtheanharmoniccalculations,weusedonlytheB2PLYP/def2-TZVPmethodforanharmoniccalculationsofMureactions.TheZPEMu−HHO(H-H)and?calculatedbythismethodare6.39kcal/moland0.983,respectively.ThecalculatedanharmonicandharmonicZPEs,?Anh,andSRP?ZPEforsaddlepointsoftheMu+C3H8reactionsaregiveninTableS3.TableS3.Zero-PointEnergies(inkcal/mol)andScalingFactorsfori-TS_Mu,n1-TS_Muandn2-TS_Mu,where“_Mu”denotesthereactionwithMuatomi-TS_Mun1-TS_Mun2-TS_MuZPE(HO)a69.68570.40470.355ZPE´(Anh)b66.35966.37566.167ZPE(Anh)c66.25466.25866.051Anhλ=ZPE(Anh)/ZPE(HO)0.9510.9410.939ZPEAnhHdSRPλ=λλ0.9370.9280.926aCalculatedbyB2PLYP/def2-TZVPintheharmonicapproximation.bCalculatedusingHDCVPT2andB2PLYP/def2-TZVPbyincludinganharmonicityofallmodesexcepttheMu-Hstretchingmode.cCalculatedbyEq.(S1)dSeeEq.(1)inthearticleproper.

6S7AnharmoniccalculationsalongthereactionpathTocalculate?Gasafunctionofs,wecarryoutHessiancalculationsalongthewhole?reactionpath.FortheH+CZPE3H8reaction,weusethevalueofSRP?determinedatthesaddlepoint.SeeTableS2.FortheMu+C3H8reaction,wedeterminedalocation-specificscalefactorforfrequencies,SRPZPE?(s),bythesamemethodasdiscussedintheprevioussectionforthesaddlepoints.Usingthese,wecalculatetheground-statevibrationallyadiabaticpotential??G(?)GZPEV()sV()s()ZPE()ss(S11)aMEPwheretheZPE(s)istheharmonicZPEatthegivenvalueofs.Forsomepointsalongthereactionpath,theHDCVPT2methodfailedtogiveaphysicalresult.Thenwefit?G(?)toalocalcubicpolynomialexcludingtheseabnormalpoints.Theafinalpointsweusedforfittingthe?G(?)andthefitted?G(?)curvesforMu+Caa3H8reactionsareshowninFigureS1-S3,togetherwiththe?G(?)correctedbyusinggenericandaSRP?ZPEforcomparisons.FigureS1.Thepointsusedforfittingground-statevibrationallyadiabaticpotentialcurves?aG(?),thefitted?aG(?)andthe?aG(?)calculatedbyusingthegenericandthesaddle-pointSRPZPE?factorfortheMu+i-C3H8reactionasfunctionsofthereactioncoordinates(wheretheisoinertialcoordinatesarescaledtoamassof1amu).

7S8FigureS2.Thepointsusedforfittingground-statevibrationallyadiabaticpotentialcurves?aG(?),thefitted?aG(?),andthe?aG(?)calculatedbyusingthegenericandthesaddle-pointSRPZPE?factorofMu+n1-C3H8reactionasfunctionsofthereactioncoordinates(thescaledmassis1amu).FigureS3.Thepointsusedforfittingground-statevibrationallyadiabaticpotentialcurves?aG(?),thefitted?aG(?),andthe?aG(?),correctedbyusingthegenericandthesaddle-pointSRP?ZPEfactorofMu+n2-C3H8reactionasfunctionsofthereactioncoordinates(thescaledmassis1amu).

8S9ThecalculatedSRPZPE?(s)ofthreepathsoftheMu+C3H8reactionareplottedinFigureS4(note:someabnormalpointsareexcluded).WecanseethattheSRPZPE?(s)ofallthreebrancheshavesimilartrendsalongthereactionpath:toagoodapproximation,theygraduallydecreasealongthereactioncoordinate.Thisrepresentstheincreasinganharmonicityasthesystemproceedstowardtheproduct,wheretheMu-HZPEisveryhigh.ThisisquitereasonablesincetheanharmonicityalongtheMu-Hstretchingcoordinateincreasesatahigherstretchingenergy.FigureS4.CalculatedSRPZPE?(s)ofthreereactionpathsoftheMu+C3H8reaction.Thegeneric?ZPE(whichisdeterminedforthereactantpropaneasdescribedabove)isgivenbydottedlineforcomparison.Asafinalcheckonthetreatmentoftheanharmonicity,weconsiderthelarge-slimitofFigureS1.Forabimolecularreactionwithbimolecularproducts(aswehavehere),wemusthave?aG(+∞)−?aG(−∞)=Δ?0(S12)whereΔ?0istheenthalpyofreactionat0K.WecancalculatebothΔ?0valuesfrom0KbondenergiesandZPEs:∆H0(H+i-C3H8)=D0[(CH3)2CH-H]–D0[H-H](S13)∆H0(Mu+i-C3H8)=∆H0(H+i-C3H8)+ZPE(MuH)–ZPE(H2)(S14)ThedataneededforEqs.(S-13)and(S-14)andtheresultingenthalpiesofreactionareinTableS4.Asafirstconsistencycheck,wecomparethefinal∆H0(Mu+i-C3H8)tothevaluecalculatedbyM06-2X/ma-TZVP,whichyields1.22kcal/mol,whichisingoodagreement.

9S10[ThisM06-2X/ma-TZVPcalculationused?ZPE=0.972(thegenericvalue)forC3H8andi-CZPE3H7and?=0.983forMuH,asobtainedbyEq.(S10).]TableS4.Enthalpyofreactioncalculations(energiesinkcal/mol)ValueSoucreD0(H2)103.27Ref.14D0((CH3)2CH-H)97.12Ref.15ZPE(H2)6.21Ref.16ZPE(MuH)13.6aRef.10Δ?0(?+?-C3H8)–6.15Eq.(S13)Δ?0(Mu+?-C3H8)1.24Eq.(S14)acalculatedbyMCG3-SRPwithscaledforceconstants(TableXV10Error!Bookmarknotdefined.)Weconcludethat?aG(+∞)−?aG(−∞)=–6.15kcal/molforH+i-C3H8(S15)?aG(+∞)−?aG(−∞)=1.24kcal/molforMu+i-C3H8(S16)FigureS1extendstolargeenoughstocalculatethetunneling,butitdoesnotextendtolargeenoughstoseeiftheSRPZPE?(s)curveisconsistentwithEq.(S16).ThereforeweperformedacalculationwhereMuisseparatedfromi-C3H7by10Å,andwecalculatedtheanharmonicitybythesamemethodasusedalongthereactionpathinFigureS1.Thisyields?ZPE=0.982bythecombinedHDCVPT2–Morsemethod(withB2PLYP/def2-TZVP)andavalueof?Gthatis1.93kcal/molhigherthanthereactantvalue(byM06-2X/ma-TZVP).Thisaindicatesthatthe?Gacurvegoesdowndeeperthanitsasymptote,thenproperlygoesuptoreachtheproductvalue.TheminimumofthecurveshouldcorrespondtothevanderWaalscomplexoftheproducts,whichiscalculatedtobe4.6kcal/mollowerthanthereactantswithoutconsideringZPE.ThischeckconfirmsthatFigureS1isreasonable.

10S11AnharmoniccalculationsofpartitionfunctionsWeneedtoscalefrequencies,notjustZPEs,tocalculatepartitionfunctionsfortherateconstantcalculations.ForthepropanereactantandforthesaddlepointandreactionpathoftheH+C3H8reaction,thescalefactorforfrequenciesisstraightforwardlysettobethesameasthescalefactorforZPE.BecauseofthespecialprocedureusedforZPEanharmonicityintheMu+C3H8reaction,wealsoneedaspecialprocedureforfrequencies,andthisisexplainednext.Basedonthefitted?GofEq.(S11),asetofnewSRP?ZPE(s)factors(SRP?ZPE(s)´)?whichcorrespondtoafitted?Gcurveareobtainedby?SRP?ZPE(s)´=[?a?(?)−?MEP(?)]/ZPE)(?)(S16)(Notethatthe??G(?)usedhereisthefittedone.)ThenforeachHessiancalculationalongeachreactionpathsoftheMu+C3H8reaction,theHessianmatrixelementsarescaledby[SRPZPE2ZPE?(s)´],whichequaltoscalingallthefrequenciesatthatstepwithSRP?(s)´.Forexample,theHessianmatrixelementsats=0.18Åarescaledby[SRP?ZPE(s=0.18Å)´]2,soallthefrequenciesats=0.18ÅbecomescaledbySRP?ZPE(s=0.18Å)´.Thenthescaledfrequenciesareusedforthecalculationofpartitionfunctionsintheharmonicapproximation.ThismeansthatthefrequenciesinthepartitionfunctionsandtheZPEsin?Garescaledby?thesameSRPZPE?(s)´atagivens.(Fromacomputational-operationsperspective,thisalsoexplainshowweusethefitted??G(?)todothetunnelingcalculationinPolyrate.)

11S12VariationaleffectsandrecrossingtransmissioncoefficientsWithinanadditiveconstantthatdependsonthezeroofenergyandonthechoiceofstandardstate,theground-statevibrationallyadiabaticpotentialcurveisthesameasthegeneralizedstandard-statefreeenergyofactivationprofileat0K.Byrecognizingthis,onecaninferfromFiguresS1-S3thattherearesignificantvariationaleffectsforallthethreeMu+C3H8reactionsbecausethevariationaltransitionstatesdeviatefrompositions(s=0)ofthesaddlepoints.Thepositionsofthegeneralizedtransitionstatesobtainedbyusingthreetypesofscalingfactorareveryclosetoeachother,thusthevariationaleffectscalculatedbyusingthesethreetypesofscalingfactorbasicallyagreewitheachother,asshowninFigureS5(withMu+i-CZPE3H8branchasanexample,wherethegenericandSRP?forthisbranchis0.972and0.937,respectively).FigureS5.Recrossingtransmissioncoefficientscalculatedbasedonthe??G(?)correctedwiththegeneric,thesingleSRP?ZPEfactordeterminedforthesaddlepoint,andtheSRP?ZPE(?)fortheMu+i-C3H8reaction.

12S13TunnelingtransmissioncoefficientsFigureS6showsthetunnelingtransmissioncoefficients?SCTasfunctionsoftemperatureforallthreepathsofX+C3H8reactions.AllthepathsoftheMu+C3H8reactionhavealargertunnelingtransmissioncoefficientthanthecorrespondingpathoftheH+C3H8reaction,especiallyatlowtemperatures,where?SCTforMureactionscanbe1-6ordersofmagnitudelargerthanthatforHreactions.ThisisbecausethelargermassofHascomparedtoMuleadstoawiderbarriersontheground-statevibrationallyadiabaticpotentialcurves,asshownfortheX+i-C3H8caseinFigureS7.FigureS6.Small-curvaturetunnelingtransmissioncoefficients?SCTforX+C3H8reactions.

13S14FigureS7.Ground-statevibrationallyadiabaticpotentialcurves??G(?)forX+i-C3H8reactionasfunctionsofthereactioncoordinatess(thescaledmassis1amu).NotethatthecurveforMu+C3H8reactionsisbasedonthefitted??G(?),andthecurveforH+C3H8isbasedonthe??G(?)calculatedusingthesaddle-pointSRPfactor.FigureS8showsthecalculatedrecrossingtransmissioncoefficientsasfunctionsoftemperatureforallX+C3H8reactions.AlltheMu+C3H8reactionshaveamoresignificantvariationaleffectthanthecorrespondingH+C3H8reaction,especiallyatlowtemperatures.FigureS8.RecrossingtransmissioncoefficientsforX+C3H8reactions.

14S15FinalcalculatedrateconstantsTableS5.Finalcalculatedrateconstantsrateconstant(inunitsofcm3molecule–1s–1)T(K)H+C3H8Mu+C3H8in1+n2totalin1+n2total2003.92E–181.39E–194.06E–184.00E–172.94E–184.29E–172505.22E–173.31E–185.55E–171.65E–165.83E–181.71E–16298.153.47E–163.59E–173.83E–165.85E–161.65E–176.01E–163003.70E–163.89E–174.09E–166.13E–161.72E–176.30E–163248.02E–161.05E–169.07E–161.10E–153.30E–171.13E–153582.09E–153.58E–162.45E–152.41E–158.84E–172.50E–153975.34E–151.20E–156.54E–155.46E–152.76E–165.74E–154005.70E–151.31E–157.01E–155.80E–153.01E–166.10E–154351.17E–143.31E–151.50E–141.13E–147.90E–161.21E–145003.55E–141.40E–144.95E–143.39E–143.93E–153.78E–146001.34E–137.71E–142.11E–131.36E–132.89E–141.65E–137003.70E–132.83E–136.52E–134.04E–131.36E–135.40E–13TherateconstantsfortheH+CZPE3H8reactionwerecalculatedwiththesaddle-pointSRP?allalongthereactionpath,andtherateconstantsfortheMu+C3H8reactionwerecalculatedwiththereaction-pathSRP?ZPE(?),whichisdifferentforeverypointonthereactionpath.InallcasesweusedthegenericZPE?forthereactantpropane.Weaddedtherateconstantsforthen1andn2pathsbecausetheyproducethesameproduct.

15S16AcomparisonofKIEsforX+i-C3H8ascalculatedwithdifferentscalingfactorsAsanextensionofFigure5inthemanuscript,thetotalKIE,ηi_total,andthreekeycontributions:thetunnelingcontribution,η,theZPEcontribution,ηZPE,andthecontributionfromtherecrossingtransmissioncoefficient,ηZPE,obtainedwithgeneric?factortogetherwiththeresultsobtainedwithSRP?ZPE(s)areplottedhereforcomparison.Wecanseethattheresultsobtainedwithgeneric?ZPEoverestimatethecontributionfromZPEandunderestimatethecontributionfromtunneling,wherethecontributionsfromrecrossingtransmissioncoefficientpredictedbythetwotypesofscalingfactorarealmostidentical.FigureS9.CalculatedKIEofthei-C3H8reactionandthreekeycontributions.SolidlinesrepresenttheresultsobtainedwiththeSRP?ZPE(s),anddottedlinesrepresenttheresultsobtainedwiththegeneric?ZPEfactor.

16S17SoftwareandcomputationaldetailsAllthedensityfunctionalcalculationswerecarriedoutbytheGaussian09package17withtheMN-GFM18module.Weuseddefaultintegrationmeshesexceptforcalculationswithmetafunctionals.Thekeywordintegral=ultrafinewasspecifiedinallKScalculationsinvolvingametafunctional,exceptforthoseusingM08-SO.ForM08-SO,amoreaccurategrid(99,974)wasusedbyspecifyingthekeywordint=(grid=99974).DuringtheHDCVPT2calculationsforMu+C3H8reactions,themodescorrespondingtotheMu-Hstretchingandsomelow-frequencymodesthathaveanunphysicallylargecouplingwithMu-Hstretchingaresettobeinactivebyspecifyingthekeywordreddim=inactive=n,wherenisthetotalnumberoftheinactivemodes(thespecificinactivemodeshavetobelistedafterablanklinefollowingthekeyword).TheCVT/SCTrateconstantsweredeterminedbydirectdynamicscalculationsusingthePolyrate19andGaussrate20programs.

17S18CartesiancoordinatesofoptimizedstructuresTheyareoptimizedattheM06-2X/ma-TZVPlevel.PropaneC1.264245-0.2602160.000001H1.297588-0.9046310.880969H2.1650190.354450-0.000101H1.297500-0.904789-0.880857C0.0000000.5902380.000000H0.0000011.245534-0.874495H-0.0000011.2455700.874469C-1.264245-0.2602160.000000H-1.297571-0.9046580.880950H-2.1650190.354450-0.000064H-1.297516-0.904762-0.880876i-TS_MuC1.276710-0.3100060.095091H1.290360-0.4439081.178622H2.1534180.272584-0.187803H1.371914-1.301284-0.359354C0.0000000.356130-0.343146H0.0000000.662649-1.388563H0.0000001.5277150.270273C-1.276710-0.3100070.095090H-1.290360-0.4439081.178622H-2.1534180.272583-0.187804H-1.371913-1.301285-0.359354H-0.0000022.3381480.773152TheH-H-Cbondangleinthistransitionstateis175.8degrees.Forcomparisonthebondangleis177.1degreesbyB2PLYP/def2-TZVP.n1-TS_MuC-1.417315-0.153049-0.000002H-1.531509-0.785816-0.881464H-2.2276250.5771550.000002H-1.531510-0.7858250.881454C-0.0526110.5382690.000002

18S19H0.0269981.1857900.876206H0.0270011.185794-0.876198C1.080036-0.4511600.000001H1.186817-1.046045-0.904669H2.2304490.284669-0.000004H1.186820-1.0460440.904672H2.9718960.825965-0.000011n2-TS_MuC-1.2853790.2857880.113458H-1.3672530.3912041.196821H-2.220448-0.135025-0.255736H-1.1717861.284836-0.310508C-0.094872-0.591695-0.254592H-0.043043-0.714209-1.339627H-0.238833-1.5978170.156282C1.206125-0.0305140.247911H1.2106180.2900851.287806H2.107054-0.570221-0.031867H1.3614821.149397-0.421509H1.4069651.920280-0.922320MuHH0.0000000.0000000.370078H0.0000000.000000-0.370078i-C3H7C-1.287103-0.1995170.004177H-1.292782-1.034899-0.702534H-2.1391340.441877-0.218912H-1.459677-0.6370820.997814C0.0000000.541062-0.054196H0.0000001.6080440.122310C1.287103-0.1995170.004177H1.292779-1.034903-0.702529H2.1391340.441875-0.218919H1.459681-0.6370760.997816n1-C3H7C1.203354-0.2875120.000040H1.230737-0.9291940.881504H2.1001470.333918-0.000023

19S20H1.230741-0.929374-0.881293C-0.0670640.578483-0.000054H-0.0483591.229083-0.877719H-0.0483881.2292600.877478C-1.308799-0.2386200.000005H-1.715063-0.6236220.924463H-1.714756-0.624179-0.924357n2-C3H7C1.216285-0.243920-0.035950H1.264853-0.9801610.768277H2.0907320.4017000.045322H1.275198-0.781240-0.983346C-0.0789370.5583920.049065H-0.1047001.313595-0.742133H-0.0840471.1281020.989984C-1.291567-0.295827-0.032540H-1.261050-1.3195370.314785H-2.2556790.125670-0.276340

20S21References

21S22(1)Laude,G.;Calderini,D.;Welsch,R.;Richardson,J.O.CalculationsofQuantumTunnellingRatesforMuoniumReactionswithMethane,EthaneandPropane.Phys.Chem.Chem.Phys.2020,22,16843-16854.(2)Bloino,J.;Biczysko,M.;Barone,V.GeneralPerturbativeApproachforSpectroscopy,Thermodynamics,andKinetics:MethodologicalBackgroundandBenchmarkStudies.J.Chem.TheoryComput.2012,8,1015-1036.(3)Kuhler,K.M.;Truhlar,D.G.;Isaacson,A.D.GeneralMethodforRemovingResonanceSingularitiesinQuantumMechanicalPerturbationTheory.J.Chem.Phys.1996,104,4664-4671.(4)Nielsen,H.H.TheVibration-RotationEnergiesofMoleculesandtheirSpectraintheInfra-red.InAtomsIII—MoleculesI/AtomeIII—Moleküle,I,Flügge,S.,Ed.SpringerBerlinHeidelberg:Berlin,Heidelberg,1959;pp173-313.(5)Mills,I.M.Vibration-RotationStructureinAsymmetric-andSymmetric-TopMolecules.InMolecularSpectroscopy:ModernResearch;Rao,K.N.,Mathews,C.W.,Eds.;Academic:NewYork,1972;pp115-140.(6)Zhang,Q.;Day,P.N.;Truhlar,D.G.TheAccuracyofSecondOrderPerturbationTheoryforMultiplyExcitedVibrationalEnergyLevelsandPartitionFunctionsforaSymmetricTopMolecularIon.J.Chem.Phys.1993,98,4948-4958(7)Grimme,S.SemiempiricalHybridDensityFunctionalwithPerturbativeSecond-OrderCorrelation.J.Chem.Phys.2006,124,034108.(8)Weigend,F.;Ahlrichs,R.BalancedBasisSetsofSplitValence,TripleZetaValenceandQuadrupleZetaValenceQualityforHtoRn:DesignandAssessmentofAccuracy.Phys.Chem.Chem.Phys.2005,7,3297-3305.(9)Kozuch,S.;Martin,J.M.L.DSD-PBEP86:inSearchoftheBestDouble-HybridDFTwithSpin-ComponentScaledMP2andDispersionCorrections.Phys.Chem.Chem.Phys.2011,13,20104-20107.(10)Pu,J.;Truhlar,D.G.TestsofPotentialEnergySurfacesforH+CH4↔CH3+H2:DeuteriumandMuoniumKineticIsotopeEffectsfortheForwardandReverseReaction.J.Chem.Phys.2002,117,10675-10687.(11)Herzberg.G,SpectraofDiatomicMolecules,2nded.D.VanNostrand:Princeton,1950;p.101.(12)Martin,J.M.L.OntheperformanceoflargeGaussianbasissetsforthecomputationoftotalatomizationenergies.J.Chem.Phys.1992,97,5012-5018.(13)Herzberg.G,SpectraofDiatomicMolecules,2nded.D.VanNostrand:Princeton,1950;p.142.(14)Ruscic,B.;Feller,D.;Peterson,K.A.,ActiveThermochemicalTables:DissociationEnergiesofSeveralHomonuclearFirst-RowDiatomicsandRelatedThermochemicalValues.Theor.Chem.Acc.2013,133,1415.(15)Blanksby,S.J.;Ellison,G.B.,BondDissociationEnergiesofOrganicMolecules.Acc.Chem.Res.2003,36,255-263.(16)Martin,J.M.L.,OnthePerformanceofLargeGaussianBasisSetsfortheComputationofTotalAtomizationEnergies.J.Chem.Phys.1992,97,5012-5018.(17)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,B.;Petersson,G.A.;Nakatsuji,H.;Caricato,M.;Li,X.;

22S23Hratchian,H.P.;Izmaylov,A.F.;Bloino,J.;Zheng,G.;Sonnenberg,J.L.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Vreven,T.;MontgomeryJr.,J.A.;Peralta,J.E.;Ogliaro,F.;Bearpark,M.J.;Heyd,J.;Brothers,E.N.;Kudin,K.N.;Staroverov,V.N.;Kobayashi,R.;Normand,J.;Raghavachari,K.;Rendell,A.P.;Burant,J.C.;Iyengar,S.S.;Tomasi,J.;Cossi,M.;Rega,N.;Millam,N.J.;Klene,M.;Knox,J.E.;Cross,J.B.;Bakken,V.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Martin,R.L.;Morokuma,K.;Zakrzewski,V.G.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Dapprich,S.;Daniels,A.D.;Farkas,Ö.;Foresman,J.B.;Ortiz,J.V.;Cioslowski,J.;Fox,D.J.Gaussian09,Gaussian,Inc.:Wallingford,CT,USA,2009.(18)Zhao,Y.;Peverati,R.;Yang,K.;Truhlar,D.G.MN-GFM,version5.1;UniversityofMinnesota,Minneapolis,2011.(19)Zheng,J.;Zhang,S.;Lynch,B.J.;Corchado,J.C.;Chuang,Y.-Y.;Fast,P.L.;Hu,W.-P.;Liu,Y.P.;Lynch,G.C.;Nguyen,K.A.;Jackels,C.F.;Fernandez-Ramos,A.;Ellingson,B.A.;Melissas,V.S.;Villa,J.;Rossi,I.;Coitino,L.;Pu,J.;Albu,T.V.;Steckler,R.;Garrett,B.C.;Issacson,A.D.;Truhlar,D.G.POLYRATE;version2010-A;UniversityofMinnesota:Minneapolis,2010.(20)Zheng,J.;Zhang,S.;Lynch,B.;Corchado,J.;Chuang,Y.;Fast,P.;Hu,W.;Liu,Y.-P.;Lynch,G.;Nguyen,K.GAUSSRATE,version2009-A,UniversityofMinnesota,Minneapolis,2009.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭