Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown

Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown

ID:81816658

大小:7.97 MB

页数:10页

时间:2023-07-21

上传者:U-14522
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第1页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第2页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第3页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第4页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第5页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第6页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第7页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第8页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第9页
Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown_第10页
资源描述:

《Direct Imaging and Location of Pb 2 and K in EMT Framework-Type Zeolite - Zhang et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCArticle2++DirectImagingandLocationofPbandKinEMTFramework-TypeZeoliteYapingZhang,DanielSmith,JenniferE.Readman,*andAlvaroMayoral*CiteThis:J.Phys.Chem.C2021,125,6461−6470ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Theunderstandingofthestructuralframeworkandmetallocationswithinzeolitesaretwocriticalaspectstotuneandfurtherexploittheirpropertiesasheterogeneouscatalysts,advancedopticaldevices,oraswaterremediationmaterials.Thedevelopmentofelectronmicroscopyhasmadeitpossibletoobservedirectlythezeoliticframeworkandthedistributionofextraframeworkcationswithintheporesattheatomiclevel.Here,wehavestudiedtheEMTframeworkprovidingdatawithanunprecedentedspatialresolution,whichhaveallowedtheanalysisoftheFAUdomainspresentintheframework.Additionally,potassiumandlead(introducedbyaqueousionexchange),whichwerenonperiodicallydistributedintheporeshavebeenlocated.Analternativeimagemode,annularbrightfield,hasbeenused,provingitsusefulnesstoextendthespatialresolutionandincreasethesensitivitytowardlightelementssuchasbridgingoxygen.Finally,thecombinationofatomicimaging(localinformation)withthethree-dimensionalelectrondiffractiontomographyanalysis(averagedinformation)determinedthelead-EMTcrystalsymmetrytobeP63mc.1.INTRODUCTIONcontainslarget-wofandt-woucageswiththreeandfivetwelve-memberedring(12MR)windows,respectively.IncontrastZeolitesaremicroporousmaterialswithtunableporosity1withthezigzagchannelsofFAUandtheeight-memberedringwidelyusedasionexchangersorheterogeneouscatalystsDownloadedviaBUTLERUNIVonMay16,2021at13:10:09(UTC).windowsofTSC,EMThasstraightaccessalongthreeamongmanyotherapplications.Theyareabletoconfinedirections,allwith12MRwindows.EMThaspreviouslyelementswithintheirporesandalsoexhibitverygoodthermal25262−4beenusedinbiomedicineandgascaptureandseparation.stability.DuetotheconfinementcapabilitythatzeolitesItalsoshowsgreatpotentialforindustrialapplicationssuchasexhibit,theycanprotectextraframeworkspecies,minimizingSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.petroleumcrackingduetoitslargechannelandcavitysize.theiragglomeration,andreleasebacktotheenvironmentasBesidestheuseofzeolitesasheterogeneouscatalystsandwellastuningtheirphysicalproperties(forexample,work5−18watersofteners,thecapabilityofzeolitestocapturedifferentfunctionorluminescence).19elementswithintheirporesystemisalsoattractiveforvariousTherearecurrentlyupto253differentzeolitetopologiesapplicationssuchasoptoelectronicsorwaterremediation.TheintheInternationalZeoliteAssociation(IZA)structureinterestofoccludingleadwithintheporesofzeolitesordatabase;amongthem,TSC,EMT,andFAUexhibitthe3metal−organicframeworks(MOFs)hasregainedmuchlowestframeworkdensitiesof13.2−13.3T/1000Åoftheinterestduetothepossibilityoftuningtheopticalresponsealuminosilicatefamily.Lowerdensityzeolitesarehighly2021oflead-loadedzeoliteswhilepreventingleaddischargeintothedesirableforsoiltreatmentapplicationsorcatalysis.EMT22environmentduetoitscoordinationtotheframework.Thewasfirstsynthesizedin1971asamixtureofFAUandEMT.ThepureEMTframework,namedEMC-2afterElf(orEcoleSuperieure)́MulhouseChimie-two,wasobtainedbyDelpratoReceived:January21,2021andco-workers23in1990andthestructurewascompletelyRevised:February21,2021solvedbyBaerlocheretal.4yearslater.24EMTisthePublished:March15,2021hexagonalpolytypeoftheFAU-typezeolite(cubic)sharingthesamelayerunitscomposedofsodalitecages(t-toc)linkedbydoublesix-memberedrings(d6R,t-hpr).TheEMTframework©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.1c005506461J.Phys.Chem.C2021,125,6461−6470

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure1.(a)Low-magnificationSEMimageofseveralEMTparticles.(b)SEMimageofanisolatedEMTcrystalwithahexagonalplatemorphology.incorporationofleadspeciescanbesummarizedinthree2.METHODStypes:(i)unitary:clusters(includingsingleatom)withonly2.1.SyntheticProcedures.2.1.1.Pb-EMT.EMTwas14,27oneelement;(ii)binary:speciesformedbytwoelements,synthesizedusingapreviouslyreportedmethod.23,40Sodium28−31suchasPbSandPbI2;and(iii)ternary:leadcompoundsaluminate(1.45g)anda50%NaOHsolution(1.21g)was32formedbythreeelements,CsPbI3andCsPbBr3.addedto7.8gofdeionizedwater,togetherwith1.76gof18-Togainstructuralinformation,thereareseveralcharacter-crown-6andstirredvigorously.Next,15.4gofahomogeneousizationmethodsavailabletohelpexplainthephysicochemicalsilicasolution(LUDOXAM-30)wasaddedwithstirringandpropertiesofzeolites.Suchpropertiesarestronglyaffectedbyincubatedfor24hoursatroomtemperaturetoincubate.Thethetypeofmetalintroduced,itssize,andlocation;therefore,mixturewasplacedina45mLParrpressurevesselandheatedcharacterizationattheatomiclevelisbecomingindispensablefor12daysat110°C.Theproductwasfilteredandwashedtotailorthepropertiesofmaterialsatthenanoscale.Zeolitewithcopiousamountsofdeionizedwaterandthencalcinedinframeworkspresenthighdegreeofsymmetry,whereastheairat540°Cfor16h.exchangedformsareusuallydisordered.Therefore,long-rangeThepotassium-ionexchangewasperformedasfollows:4gtechniquessuchasX-raydiffractionandRietveldanalysisdoofEMTwasaddedto500mLofa0.1MKNO3solutionandnotalwaysgivetheshort-rangeinformationneeded.Inthisstirredovernight.Thepowderwasrecoveredandwashedwithsense,transmissionelectronmicroscopyisthemostpowerful1Lofdistilledwaterandair-driedovernight.Theexchangemethodologyasitcanprovidedirectvisualizationoftheprocedurewasrepeatedfurthertwotimes.frameworkandtheguestspeciesatanatomicleveltogetherThelead-ionexchangewascarriedoutasfollows:2gofwithcrystallographicandchemicalinformation.33−37AllofEMTwasaddedto500mLofa0.1MPb(NO3)2solutionandtheseresultshavebeenachievedwiththoroughcontrolofthestirredovernight.Thepowderwasrecoveredandwashedwithelectrondose,aszeolitesarestronglybeamsensitive.Working1Lofdistilledwaterandair-driedovernight.Theexchangeintheprobemodeoffersaquickscan,reducingthesampleandwashingprocedureswererepeatedfurthertwotimes.2.2.Characterization.2.2.1.ScanningElectronMicros-damage.Thepossibilityofobtainingsub-Ängstromprobescopy.STEManalyseswerecarriedoutonaJEOLGrandARMtogetherwiththeuseofseveraldetectorssimultaneouslyallows300,equippedwithacoldfield-emissiongun(coldFEG)andforthecollectionofsignalsatahighangle(annulardarkfield,operatedat300kV.ThecolumnwasfittedwithaJEOLdoubleADF),providinginformationregardingtheheavyelements.sphericalaberrationcorrector,whichwasalignedpriortotheMeanwhile,anannularbright-fielddetector(ABF)enhances38,39analysestoassureamaximumspatialresolutionof0.7Åinthethesignaloflightcompounds,whicharescatteredatlowscanningmode.Themicroscopewasalsoequippedwithaangle.Therefore,bycombiningtheinformationfrombothJEOLEDSandaGatanQuantumEnergyFilterfordetectors,determiningthelocationandelementtypeofbothspectroscopicmeasurements.lightandheavyelementsisachievable.2.2.2.3D-EDT.The3D-EDTdatawerecollectedusingInthiswork,EMTframework-typezeolitewasionJEOL.ShellsoftwareinaJEOLJEM2100PluselectronexchangedwithPb(NO3)2tofinallyobtainapartiallyloadedmicroscopeoperatedat200kVinthetransmissionelectronPb-EMT.Thecharacterizationhasbeenprimarilycarriedoutmicroscope(TEM)mode.Atotalcollectingangleof120°wasbyatomic-resolutiontransmissionelectronmicroscopyimag-obtainedbytiltingthesampleholderfrom−60to+60°.TheingthathasbeenacquiredbycombiningADFandABFintensitieswereextractedwithEDT.Processsoftware.Finally,detectorstoobtainatomicallyresolveddataoftheframeworkthestructurewassolvedwithSir2014.41andontheextraframeworkcations.Theseobservationshave2.2.3.Energy-DispersiveX-raySpectroscopy(EDS).EDSbeencorrelatedwiththedataobtainedbythreedimensionaldatawerecollectedusingaJEOLJEM2100Plusoperatedinelectrondiffractiontomography(3D-EDT).TheexistenceoftheSTEMmodewithanacceleratingvoltageof200kV.FAUintergrowthshasalsobeenanalyzedbasedonthis2.2.4.ScanningElectronMicroscopy(SEM).Thescanningtechnique.electronmicroscopy(SEM)imageswerecollectedonaJEOL6462https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure2.(a)EMTmodelalongthe[110]/[100]EMTorientation.(b)FAUmodelalong[110].(c)Schematicmodelofalayerunit(faujasitelayer),frontview.(d)Topviewofthemodelcorrespondingtoalayerunit.Theoriginsforthesubsequentlayersaremarkedbyyellow,blue,andgreendots.Colorcode:rosecagescorrespondtot-toc(sodalitecages);t-hpr(doublesix-memberedring,D6R)appearingreen(betweenlayers)andinpurple(withinperlayer)cages.(e)Cs-correctedSTEM-ADFmicrographrecordedalong[110]/[100]EMTwithanFAUintergrowthmarkedbyyellowlines.TheFourierdiffractogram(FD)isshownintheinsetwithyellowarrowspointingatthediffusestreaks.(f)CloserobservationofanothercrystalwheretwoFAUdomainsarejointedbyamirrorplaneBB′.Thedashedbluecirclescorrespondtothe12MRs,whiletheyellowonesdenotethepartiallyblocked12MRswithinthetwinplane.(g)Schematicrepresentationofthestructuremodelof(f)alongthe[001]EMTdirection.JEM7800Primewithaworkdistanceof7mmunderalandingpresentingwell-definedhexagonalparticleswithathicknessupvoltageof1kV.to500nmandwidthsthatreacheduptoseveralmicrons,see2.2.5.STEMSimulation.ThesimulatedADF-STEMandFigure1.ABF-STEMimagesalong[100]wereobtainedwithsoftwareThisframeworkisformedbydoublesixrings(d6Rs)andQSTEM.42Asupercellof150×150×150Å3wasconstructedsodalite(sod)cagesthatwhenconnected,formfaujasitelayersforpuresilicaEMT.Theprobearraywas600×600pixels(layerunit),with12-memberedringsformedalongthebandcwith0.032Åresolutionandaslicethicknessof1Å.Thedirections.Thestackingsequenceoftheselayersallowsthedetectorgeometryinnerandouterangleswere50−200mradformationofeitherEMTorFAU.ByAA′stackingoffaujasiteforADFand5−40mradforABF.sheets,EMTisobtained,wheretheadjacenttwolayersare2.2.6.ImageTreatment.Tominimizethebeamdamage,relatedtoeachotherthroughamirrorplane.Alternatively,intheelectrondosewassignificantlyreducedincomparisonwithFAU,thestackingsequenceisABC,wheretheconnectivitystandardSTEMconditions.Forthecurrentexperiments,theexhibitsinversionsymmetrybetweensuccessivelayers.totaltimeforimageacquisitionrangedfrom6to10s,1024×ForEMT,alongtheb-axis,the12MRsrunparalleltothe1024pixelsusinganelectrondoseof1120−2800e−/Å2.observationaxiswhilethelayerunitrunsperpendicularalongUndertheseconditions,imagescouldbedirectlyinterpretatedthec-axisinanAA′stacking.Thechemicalformulaforandallintensityanalyseswereperformedoverrawdata.calcinedEMC-2hasbeenreportedtobe[Na20(H2O)6]-However,foraclearervisualizationoftheframeworksandof[SiAlO]-EMT,wherethe20Na+cationsthatcompen-7620192thelightcations,theRandomNoise2DdifferencefilterwassatethepresenceofAltetrahedrasitinthreecrystallographic43usedfromHREMResearchInc.sitesatX2:0.5890,0.1770,and0.0470;X3:0.6667,0.3333,and0.6270;andX4:0.3571,0.1790,and0.3880with0.25,0.32,3.RESULTSANDDISCUSSIONand0.33siteoccupancy,respectively;seeFigureS1.InFigureTheEMTframeworktypeisazeolitebelongingtotheS1,theT(T=SiandAl)atomsarepresentedasblue,brown,hexagonalcrystalfamilyandP63/mmcspacegroup.Thelatticepurple,andgreenspherescorrespondingtothedifferentconstantspreviouslyreportedarea=b=17.215Å,c=28.082crystallographicsites,Oinred,whileX2appearsinyellow,X3Å,α=β=90°,andγ=120°.Themorphologyoftheobtainedinlightblue,andX4inpink,allofthemassociatedtothe6SRsEMTparticleswasinagreementwiththehexagonalsymmetryofthesodcages.6463https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure3.Cs-correctedSTEM-ABFdataofPb-EMT.(a)Atomic-resolutiondataalongthe[100]projectionwiththeFDshownintheinset.Thewhitearrowcorrespondstoastructuraldefect.TheyellowcircleintheFDindicatesthemaximumtransferinformationcorrespondingtothe00022spot.(b)Symmetryp2gmaverageddatawiththeframeworkmodelsuperimposed.TheredarrowspointatObridges,theblueonecorrespondstotheTatoms,andtheyellowandpinkonestoextraframeworksignals.3.1.AnalysisofFAUIntergrowths.IthasbeentotheEMTframework,allowtheclearvisualizationofthepreviouslymentionedthatduetothestructuralsimilarities12MRs,markedbybluedashedcircles.Whileinbetween,the(theuseofthesamebuildingunitsdifferingonlyonhowthetwinplaneismarkedinpinkcolor.Byobservingthisstructurelayersstack),FAUandEMTcancoexistinthesamealongthe[001]projection,asshowninFigure2g,thesetwo23,37,44crystals.Alongthe[110]orientation,bothhexagonalEMTdomainswouldoverlap,wherethe12MRsmarkedwithaEMTandcubicFAUexhibitdifferentwaysofpillaringthebluebackgroundwouldbeblockedbysodalitecagesfromthefaujasitelayers,whereforEMT,thereisanAA′AA′...stackingtwinplane,BB′,asshowninFigure2f.Thelarge12MR(Figure2a)andforFAU(Figure2b),itfollowsABC...windowsoftheBB′stackingwouldalsobeblockedbythepillaring.Theselayersareformedbysodalitecages(t-toc),inEMTsodalitecagesfrombothsides,asshowninFigure2g.Bypink,linkedbyd6Rs(t-hpr),inpurple,whicharesubsequentlyobservingFigure2f(yellowcircles),theexistenceofafaintalsoconnectedbyd6Rs(t-hpr)showningreenbetweensignalinsidethe12MRsinthetwinplanethatisassociateddifferentlayers.AnisolatedfaujasitelayerunitisdepictedinwiththepresenceofsodalitecagesfromtheEMTregioncanFigure2c.beappreciated,partiallyblockingthesechannels.These12MRsBecauseofthesestructuralsimilarities,itcouldbeexpectedarefullyemptyintheEMTarea(bluedashedcircles).thatintergrowthsofbothphasesduetothelayerstacking3.2.AnalysisoftheEMTFrameworkandExtrasequenceinadefectivewaywouldexist.Infact,therearemanyFrameworkCations.ItispossibletosynthesizetheEMTcaseswhereEMThasbeencrystallizedinthepresenceof45−47frameworkwithdifferentSi/Alratios,butingeneralterms,theFAU.ForEMT,AandA′layersaremirrorrelatedtoeach48mostcommonzeoliteobtainedhasbeenEMC-2withtheother.WhileinFAU,layerBisshifted(1/2a,1/2b,1/2c)23,24relativetolayerA,andlayerCisshifted(1/2a,0,1/2c)chemicalformula|Na20(H2O)6|[Si76Al20O192].Inthiswork,energy-dispersiveX-rayspectroscopy(EDS)analysesrelativetolayerA.TheoriginoftheA,B,andClayersiswereusedtoestimatethechemicalcompositionofthecurrentmarkedinFigure2d.Larget-wouandt-wofcagesforEMTandEMT(TableS1).Theresultsobtainedwerereasonableandint-faucagesforFAUareformedbetweenlayers.t-wof,t-wou,agreementwiththedatareported.Themostrelevantandt-fauhavethree,five,andfour12MRswindows,differenceswithpreviousstudieswerethatK+wasalsousedrespectively.asacounteriontogetherwithNa+,andthatPb2+wasalsoFigure2ecorrespondstotheCs-correctedSTEMADFimageofanEMTcrystalwithstructuraldefectsinthedetectedduetotheionexchange.Basedontheseresults,theframeworkevidencedbythediffusespots(yellowarrows)inelectroneutralitywouldbemaintainedasthesumofthetheFourierdiffractogram(seeinset).Thisregion,ofpositivechargesfromthecationicspecieswouldbe18thatwouldcompensate20(AlO−)oftheframework.Thesmallapproximately6nmalongthe[110]/[100]EMTzoneaxis,4correspondstoaFAUdomainenclosedbyEMTregions.Inmismatchbetweenthecationsandaluminumisrelatedtoaanothercrystal,thesequenceAA′ABB′A′AA′canbeobserved,slightexperimentalerrorofthetechniqueortothepresenceofprotonicspeciesH+fromwater.Infact,theexcessofOasshowninFigure2f.ThisregionisformedbytwoFAUdomainsconnectedthroughamirrorplane(definedbyBB′detectedcouldbeassociatedwithwateradsorbedinthepores.Forsimplicity,hereafter,wewillreferonlyK+whenlayers)enclosedwithintheEMT.Fordirectinterpretation,theconsideringbothNa+andK+,asduetotheirlowcontentschematicmodelhasbeensuperimposeddisplayedindifferentcolorstodistinguishthethreezones,asshowninFigure2f.andasimilaratomicnumber,itisnotpossibletodistinguishTheleft(green)andright(yellow/red)regions,correspondingbetweenbothmetals.6464https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure4.(a)Cs-correctedSTEM-ADFalong[100]ofPb-EMT.Thethreecoloredrectanglescorrespondtotheareaswheretheintensityanalysiswasperformed.Thedashedyellowrectangleindicatesfromwherefigure(b)wasobtainedfrom.(b)Closerobservationoftheframeworkwherethebrightspotsaremarkedbyyellowarrows.Anemptys6Risdenotedbyadashedbluecircle.Thedashedpinkcirclecorrespondstos6Rwithacationinside.(c)Enlargedimageofs6Rwherethetwoarrowsindicatewheretheintensityprofileswereextractedfrom,numberedas1and2.(d)Intensityprofilesalong1and2.Annulardark-field(ADF)togetherwithannularbright-fieldelementsanditsignificantlyincreasesthesignal-to-noiseratio.(ABF)imagingmodescanrevealuniqueinformation,Ontheotherhand,itintroducesundesiredperiodicity,whichespeciallyatalocallevel.UsinganADFdetector,theelectronsisdisadvantageousfornonperiodicmaterialssuchaszeolitesscatteredatahighangleareusedtoformtheimages,allowingwithunevencationicdistribution.Here,symmetryaveragingthevisualizationofheavierelementsasthesignalishasbeenusedtoimprovethesignal-to-noiseratio;forEMTproportionaltoZ1.6−2,49,50whereZistheatomicnumber.topology,thereportedspacegroupisP6/mmc(194);3Ontheotherhand,ABFprovidescomplementaryinformationtherefore,itsplanegroupalong[100]shouldbep2gm.Theoftheframework,asitismoresensitivetolightcompounds,averageddataassumingthisspacegroupisdepictedinFigure36,38,39evenwithahigherspatialresolution.3b,highlighting(i)Tatoms(bluearrow)and(ii)oxygenFortheEMTframeworktype,themostsuitableprojectionsbridges(redarrows)andadditionalsignalsthatarenotpartofforthestructuralobservationare[110]/[100]twoequivalenttheframework(pinkandyellowarrows).Tofacilitatetheorientationswiththeminimumatomiccolumnoverlapping;interpretation,themodeloftheframeworkhasbeenhereafter,wewillreferonlyto[100]forsimplicity.Figure3asuperimposedwhereSiappearsinblueandOinred;forcorrespondstotheCs-correctedSTEM-ABFmicrographofclarity,thepresenceofextraframeworkcationicspecieshasPb-loadedEMTzeolitealongthe[100]orientation;inthisbeenomitted.FigureS2comparestheexperimentaldatacase,theatomiccolumnsappearasblackdotsandthebig(FigureS2a)withthesimulatedimage(FigureS2b)oftheall-pores,whichareclearlyobservablecorrespondingto12MRs.silicaframework(withoutcationicspeciestohighlighttheThewhitearrowspointtoastructuraldefectresultinginthedifferencesbetweenthebareframeworkandtheexperimentalmergingoftwofaujasitesheets,whichbreakstheAA′Adata);inbothcases,coloredarrowshavebeenusedtopointstacking;theFDshownintheinsetprovesthatthespatialtheframeworkatomsandtheextraframeworksites.Figure3bresolutionthatcanbeachievedisatleast1.2Årepresentedbyexhibitsexcellentimagequalityanditcorroboratesthethe00022diffractionspot,markedbyayellowcircle.ThefeasibilityofABFimagingfortheobservationoflightsymmetry-averagedimageisdepictedinFigure3b;althoughcompoundsasoxygenbridges.Inaddition,thetwodistincttheABFdataalreadypresentasufficientdegreeofqualitytosignalsthatdonotbelongtotheframeworkcanbeinferredtoanalyzethestructureatanatomiclevel,theaverageddataarebecationicspecies;however,anaspectthatneedstobedisplayedtofacilitatetheobservationofsomeparticularconsideredisthat,toobtainthisimage,symmetryrestraintsaspects.Symmetryaveragingimagetreatmentpresentscertainhavebeenintroducedandthepresenceofthoseextraadvantagesasitallowsdiscussionaboutplanesymmetryframeworkspeciesdoesnotnecessarilyneedtobeperiodic.6465https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleToevaluatethisaspectandtostudythepossibleintroductions6Rscouldalsobeidentified;seedashedbluecirclesinFigureofPb2+intheporesafterionexchange,weturnedtoC-4b.ThisobservationcouldbeassociatedwiththepresenceofscorrectedSTEM-ADFwithoutimposinganysymmetryaluminumintheframework,suggestingthatthealuminumwasaveraging,asshowninFigure4.Figure4adepictsthenotperiodicallydistributedastheemptys6RswouldbelinkedcorrespondingCs-correctedSTEM-ADFdataofthePb-EMTtotheabsenceofAlatthosesites;meanwhile,theextrazeoliteonthe[100]projection;here,thecontrastisreversedframeworkcationicpresencesuggeststheexistenceofAlwithrespecttotheABFdata,wheretheatomiccolumnsaroundthem.Figure4cdepictsanenlargedimageof12MR,appearasbrightspotsandinwhichthe12MRsareobservedobtainedfromtheyellowdashedrectangleinFigure4b,wheretogetherwiththed6Rsandthesodalitecages.Interestingly,aK+canbelocatedwithins6R.Twodifferentintensityprofilesstrongcontrastisobservedasbrightspots,whichappearatwereplottedinFigure4d,alongthearrows1and2,wheretwospecificsitesinanonperiodicmanner.Theareasmarkedbypeaksarepresent:thefirstoneandmoreintensecorrespondsrectangleswithdifferentcolors,numbered1−3,wereenlargedtoanatomiccolumnoftheframework,SiorSi+Al,whilethetoanalyzethecontrastvariationsatdifferentregionsoftheotherbelongstoK+.Themeasuredprojecteddistanceswered1crystal,whiletheadditionaldashedyellowrectanglecorre-=2.05Å,correspondingtothedistancebetweenaT2cationspondstotheareathatismagnified,asshowninFigure4b.andd2=2.28Å,correspondingtothedistancebetweentheT4Theintensityprofilesalongseveralsodalitecageswerecation;thesemeasurements(slightlyshorter)areinagreementextracted(FigureS3),observingsomemaximacorrespondingwiththedatareportedforNa-EMT(forX4sites),wheretothebrightspots.InFigure4a,the12MRsareclearlyprojecteddistancesare2.20and2.42Å,respectively.visualizedasemptypores;meanwhile,thebrightspotswouldFurthermore,noevidenceforthepresenceofK+orPb2+atbeplacedatthesiteswhereNa+hasbeenproposedtooccupy,Xsiteswasfoundinanyoftheequivalentsites.2correspondingtotheXandXsites.ThisobservationisinBasedontheseobservations,Pb2+wouldpreferentially34agreementwiththedataobtainedwithanABFdetector(seereplacethecationsattheX3sites,asshowninFigure4bFigure3b,yellowarrow),whichindicatesaverystrongsignal(yellowarrows).DespitethattheX3andX4sitesaretooclose(thatappearsperiodicallyduetothesymmetry-averaging)neartobedistinguished,wehavenotobservedevidenceforthetheoxygenbridges.SuchsignalobservedintheABFandinthepresenceofPb2+ats6Rs,denotedbypinkdashedcirclesinADFcannotderivefromtheObridgesduetotheirlowFigure4b,whichwouldcorrespondtoK+atXsites.4scatteringfactor,andtherefore,itisowedtothepresenceofTherefore,asK+atXsiteshastwoequivalentpositionsif4singlePb2+sites(singleatoms,oratomiccolumns).DuetothePb2+wouldenteratX,thisstrongersignalwouldbeobserved4lowinitialoccupancyoftheextraframeworkcations(K+andatthesitesindicatedbyapinkcircleandatthesitespointedbyNa+here),itcannotbeestimatedwhetherPb2+isintheformyellowarrows.Asthisisnotthecase,itispossibletoconcludeofsingleatomsorifthereareseveralPb2+onthesamecolumn.thatPb2+wouldonlygointothesitesdenotedasX;infact,as3Nevertheless,XandXsitescorrespondtotwodistinctatomicK+isatX,thetotalsignaldetectedatXwouldbemostly3443siteswithdifferentcoordinates;however,duetotheirowingtoPb2+butwithacontributionfromK+presentatX.4proximityintheprojectedimage≈0.5Å,itcannotbeinitiallyDespitethat,thePb2+signalwasnothomogeneouslyobserveddistinguishedwhetherPb2+replacedX,X,orboth.alongtheentirecrystal;italwaysoccupiedaparticular34Forin-depthinvestigationoftheion-exchangecapabilityandcrystallographicsite.However,duetothelowoccupancyofthereforethelocationofthecations,theschematicmodelofatheextraframeworkcations,0.33forX4,itdoesnotappearsodalitecageisshowninFigureS4a.Thecolorcodeissameasalongtheentirecrystal.Fromtheseobservations,itcanalsobeinFigureS1,whichdisplaysT(T=Si,Al)crystallographicinferredthatPb2+wouldcompensatetheelectricchargeofthe3sitesinpurple,formings6R,wherethelight-bluespherecationsatX2sites;asseenfromtheexperimentaldata,nocorrespondstothecationicsiteatX3.BlueTatomssignalwasdetectedatthesepositions,suggestingthatthecorrespondtoT,brownspheresaretheTsites,purpleT,cationswereremovedfromthesesitesbutPb2+didnotfillthe123andgreenT.CationsatXaremarkedinpink,whilecationicpositions;theelectroneutralitywasmaintainedasonePb2+44sitesatXappearinyellow.IfPb2+wouldoccupytheXsite,wouldcompensatetwomonoatomicspeciesofeitherNa+or24thiswouldcorrespondtothelocationofPb2+ontopoftheK+.Forcomparison,simulateddatawerecomparedwiththeS6Rsofthet-toccage;seeFigureS4a.Ontheotherhand,ifexperimentaldata;seeFigureS5.FigureS5acorrespondstoPb2+wouldreplaceX,thisonewouldbeinasimilarposition,thesimulatedimageoftheEMTframeworkwithnocations3ontopofanotherS6Rsofthet-toccagebutclosertotheaddedtothestructure.FigureS5bdisplaysthesameimageframework.FigureS4bpresentsanentireunitcellwiththewithdifferentamountsofK+andPb2+addedtothesystem.samecolorcode,alongthisprojection,theproximitybetweenThebluedashedcirclecorrespondstos6RwhereK+isnotXandX.Itisimportanttomentionthatnoexperimentalobserved;thenumberofK+thatwasplacedatthatsitewassix34evidencewasfoundofPb2+occupyingtheXsites,whichinatomsinthatcolumn;therefore,foragiventhicknessof8nm2theprojectedimagewouldbeinsides6RsveryclosetoT(≈4unitcells),sixatomsofK+percolumnwerenot1atoms.detectable.ThepinkdashedcirclecorrespondstoK+ats6RsTheotherextraframeworksignalswhichwerenotasintense(18atomspercolumn,whichareclearlyvisible).Meanwhile,asPb2+wereobservedwithins6Rs.Inthiscase,thesignaltheyellowarrowpointsatthesignalowingtoPb2+(inthismarkedbyapinkarrowintheABFdata(Figure3b)andbyacase,thecolumnwasfilledbysixatoms).FigureS5cpinkdashedcircleinFigure4b,wouldcorrespondtoK+correspondstotheexperimentaldataobtained.Toignorecations(basedonthechemicalanalyses,theK+contentisthatthestrongsignalobservedcanbetheresultofthepossiblemuchhigherthanNa+,althoughbecauseoftheirsimilarinteractionoftheframeworkatomswiththecations(duetoatomicnumbers,itwouldnotbepossibletodistinguishtheirproximityontheprojectionimage),additionalsimu-betweenthem).TheseextraframeworkspecieswerenotlationswithdifferentcationiccontentsaredepictedinFigureperiodicallydistributedalongtheentireframework,asemptyS5d,e.6466https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure5.(a)StructuralsolutionusingP63/mmc(194).(b)StructuralmodelafterremovingPbAorPbB,leadingtoalowersymmetryP63mc.(c)Cs-correctedSTEM-ADFdataaftersymmetryaveraging.Thecoloredcirclesindicatethesamecrystallographicsitesineachimage,greencorrespondstoPb2+,rosecorrespondstoK+,andyellowwouldbetheequivalentsitetoPb2+markedbyagreencircle.3.3.FrameworkAnalysisandCrystallographicDeter-experimentalatomic-resolutiondatapresentedinFigures3minationofPb2+andK+Positions.Howimageanalysisatand4alongthe[100]projection(yellowarrowsinFigures3theatomiclevelcanprovidelocalinformationofthezeoliticand4).Althoughtheaveragedsolutionfrom3D-EDTframeworkandextraframeworkcationshasbeenprovedsofar.suggestedfourequivalentpositions,theexperimentalCs-Ontheotherhand,electrondiffractioncandelivermorecorrecteddatarevealedthatPb2+didnotoccupyallofthefourgeneralinformationasthesolutionobtainedisbasedonansites.Instead,Pb2+wouldnotfillthesitessituatedoppositetoaverageoverseveralunitcells.ThestructureofPb-EMTeachother,correspondingtoeitherPbAorPbBinFigure5a.zeolitewassolvedbasedonthediffractionintensitiesextractedBasedontheseobservations,iftwoPb2+atomsfromeitherPbAfromthe3D-EDTusingdirectmethod.FigureS6displaystheorPbBsitesareremoved,thespacegroupwouldloweritsextractedelectrondiffractionpatternsalongthemaincrystallo-symmetrychangingfromP63/mmctoP63mc(seeFigure5b),graphicorientations.ThepatternsshowninFigureS6a−cwherethetwoPb2+atoms(greenspheres)aremarkedbybelongtoc*,b*,anda*projections,respectively.Alongthec*-yellowcircles.Ontheotherhand,lightcationsNa+/K+wereaxis,thiszeoliteexhibits6-foldsymmetry,whiletwofoundats6Rsofthet-woucages(rosespheres).Atthisperpendicularmirrorplanesarepresentalongtheothercrystallographicsite,someoftheNa+/K+symmetricequivalentorientations,runningalonga*,b*,andc*axes(seeFiguresitesoverlapwithPb2+along[110]/[100]projections,asS6b,c).Fromthehhkplane(FigureS6d),thereflectionshowninFigure5b,buttheyareindifferentcages.condition00l:l=2nwasconfirmed,markedbyablueToreachouttothesefindings,weturnedouttoimagerectangle.Forhk0,hk1,hk2,andhk3planes,hhlandh-hl(l=analyses(Figure5c).Figure5cdisplaystheADFsymmetry-1,2,3,4)reflectionsaremarkedwithgreenandpinkaverageddataobtainedafterusingtheplanegroupsmarkedinrectangles,respectively.Reflectionsh-hlappearinalloftheFigure5c;p1istheexperimentaldatawithnosymmetryfourlayers,whilehhlonlyappearswhenl=2n(FigureS6e−operationimposed,andonlytranslation.Theothertwoimagesh).Thesereflectionconditionsareinagreementwiththewereobtainedafterusingpg(planegroupfromP63mc)andextinctionsymbolP__c.Thus,onlythreespacegroupsfulfillp2gm(planegroupfromP63/mmc).ToclearlyhighlightthetheseconditionsP63mc(186),P-62c(190),andP63/mmcdifferencesbetweenthethreeimages,colorcircleswere(194).Thesethreewereusedtosolvethestructure,obtainingsuperimposedinthefigure;greenwouldcorrespondtothereliableresultswhenP6mcandP6/mmcwereused.ThestrongsignalsassociatedwithPb2+,rosecircleindicatesthe33structuresolutionassumingthehighestsymmetrywouldbelightsignalsfromK+,andtheyellowcircleindicatesequivalent24sitesforPb2+,whichwouldoverlapthesymetricallyrelatedP63/mmc(194)inagreementwiththeEMTtopology,(Figure5a).Basedonthedataextractedfrom3D-EDT,(seesitesofK+markedbyrosecirclesinFigure5c,asshowninTableS2foratomiccoordinates)Pb2+cationswouldoccupyFigure5b.AlthoughPb2+andK+,greenandrosecircles,thet-wofcagewith4equivsites,representedasgreenspheresrespectively,areequalforthethreecasesthemajordifferenceinFigure5a.Meanwhile,thelightcationsNa+/K+situatedisindicatedbytheyellowcircleasastrongsignalisobservedwithinthelarget-woucageshave12equivsitespercell(roseforp2gmthatisabsentforpgandforp1(experimentaldata).spheres).TheseresultsareinconcordancewiththeBasedonthissignificantdifference,itispossibletoconclude6467https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

7TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlethatPb2+didnotfillthesitessituatedoppositetoeachother■AUTHORINFORMATIONoccupyingtwoofthefoursymmetricallyrelatedsitesandthatCorrespondingAuthorsthecorrectplanegroupshouldbepg,andtherefore,thecorrectJenniferE.Readman−SchoolofPhysicalSciencesandspacegroupconsideringthiscationicdistributionisP63mc.Computing,UniversityofCentralLancashire,PrestonPR1BycomparingtheexperimentaldataacquiredbyCs-2HE,UnitedKingdom;Email:JEReadman@uclan.ac.ukcorrectedimagingatanatomiclevel,itwaspossibletoAlvaroMayoral−InstitutodeNanocienciayMaterialesdeelucidatepreferentialsitesforPb2+andK+aswellasevaluateAragón(INMA),CSIC-UniversidaddeZaragoza,Zaragozatheion-exchangecapabilityandthesitesthataremoresuitable50009,Spain;CenterforHigh-ResolutionElectrontobeinitiallyexchanged.TheelectrondiffractiondataallowedMicroscopy(CℏEM),SchoolofPhysicalScienceandthecharacterizationoveranaveragedvolumeofthestructure,Technology(SPST),ShanghaiTechUniversity,Shanghaiandtheresultsobtainedwereinagreementwiththatobtained201210,China;AdvancedMicroscopyLaboratory(LMA),byC-correctedSTEM,allowingustoconcludethatPb2+isUniversityofZaragoza,Zaragoza50018,Spain;s+orcid.org/0000-0002-5229-2717;Email:amayoral@locatedinthet-wofcageandKislocatedinthet-woucage.Byunizar.esimaging,itwaspossibletoacquirelocalinformationshowingtheabsenceofcationsatpositionsthatshouldhavebeenAuthorsoccupiedbasedontheelectrondiffractionshouldbeoccupied.YapingZhang−CenterforHigh-ResolutionElectronThisisbecausetheresultsobtainedbyelectrondiffractionMicroscopy(CℏEM),SchoolofPhysicalScienceandwereaveragedoverarelativelylargearea(100nm,limitedbyTechnology(SPST),ShanghaiTechUniversity,Shanghaithediffractionapertureused).Therefore,theatomic201210,ChinacoordinatesoccupiedbyPb2+andNa+/K+,whichwerenotDanielSmith−SchoolofPhysicalSciencesandComputing,partofthezeoliteframework,weretheresultofnotsingleUniversityofCentralLancashire,PrestonPR12HE,UnitedatomsbutthepreferentialsitesforcationicoccupancythatonKingdomaveragetendtogotothosesites.TheseresultsillustratetheCompletecontactinformationisavailableat:importanceofcombiningelectrondiffractionwithatomic-https://pubs.acs.org/10.1021/acs.jpcc.1c00550resolutionimagingtoachieveacompletecharacterizationofthestructureofzeolites,especiallywiththeintentionofgainingAuthorContributionsinformationatalocallevel.Thismanuscriptwaswrittenthroughthecontributionsofallauthors.Allauthorshavegivenapprovaltothefinalversionofthemanuscript.4.CONCLUSIONSNotesInconclusion,acombinationofvariouselectronmicroscopyTheauthorsdeclarenocompetingfinancialinterest.techniqueshasbeenusedtoanalyzethestructureandtheion-exchangecapabilityofEMTzeolite,whereK+andPb2+were■ACKNOWLEDGMENTSbothintroducedinthepores.ByusingamultitechniqueTheauthorsdeeplythankProfessorOsamuTerasakiforapproach,theparticularfeaturesofPb-EMThavebeenfruitfuldiscussions.TheauthorswouldliketothanktheCentrerevealed.SEMdataallowedthevisualizationoftheforHigh-resolutionElectronMicroscopy(CℏEM),supportedmorphology,obtainingsymmetryelements,whichfacilitatedbySPSTofShanghaiTechUniversityundercontractNo.thestructuralsolution.EM02161943andtheNationalNaturalScienceFoundationofCs-correctedSTEMobservationsdisplayeddatawithChinaNFSC-21850410448andNSFC-21835002.A.M.alsoenoughqualitytoobtainatomic-resolutioninformation,evenacknowledgestheSpanishMinistryofSciencethroughtheshowingtheoxygenbridgesaswellascationsPb2+andK+thatRamonyCajalProgram(RYC2018-024561-I)andthewereatomicallydistributedovertheframework.TheatomicregionalgovernmentofAragon(Spain)(DGAE13_20R).coordinatesweredeterminedby3D-EDT.BothPb2+andK+ThisprojecthasreceivedfundingfromtheEuropeanUnion’swerefoundtobeoutsidethesodalitecagesandabovethes6RsHorizon2020researchandinnovationprogramundergrantofthesecages,whilePb2+wasinthet-wofcages,K+wasint-agreementno.823717ESTEEM3.woucages.Overall,atomic-resolutionimagesprovidedinsights■ofthelocalstructureofPb-EMTgaininginformationontheREFERENCES(1)Li,Y.;Li,L.;Yu,J.ApplicationsofZeolitesinSustainableion-exchangecapabilityandonthelocationandperiodicityofChemistry.Chem2017,3,928−949.theextraframeworkcations,whichhelpedachievingamore(2)Atienzar,P.;Valencia,S.;Corma,A.;Garcia,H.Titanium-accuratestructuralsolution.Bythecombinationof3D-EDTContainingZeolitesandMicroporousMolecularSievesasPhoto-withtheimageanalysis,itwasconcludedthatcrystalsymmetryvoltaicSolarCells.ChemPhysChem2007,8,1115−1119.hadtobereducedfromP63/mmctoP63mc.(3)Koeppe,R.;Bossart,O.;Calzaferri,G.;Sariciftci,N.AdvancedPhoton-HarvestingConceptsforLow-EnergyGapOrganicSolarCells.Sol.EnergyMater.Sol.Cells2007,91,986−995.■ASSOCIATEDCONTENT(4)Nishida,K.;Ohnishi,A.;Kitaura,M.;Sasaki,M.;Kuriyama,Y.*sıSupportingInformationOpticalAbsorptionofCdi2singleMoleculeandClustersIncorpo-ratedintoZeoliteNa-FAU.J.Phys.Soc.Jpn.2009,78,No.104704.TheSupportingInformationisavailablefreeofchargeat(5)Xu,D.;Wang,S.Y.;Wu,B.S.;Zhang,B.;Qin,Y.;Huo,C.F.;https://pubs.acs.org/doi/10.1021/acs.jpcc.1c00550.Huang,L.H.;Wen,X.D.;Yang,Y.;Li,Y.W.HighlyDispersedSingle-AtomPtandPtClustersintheFe-ModifiedKlZeolitewithExperimentaldetails,includingchemicals,synthesis,andEnhancedSelectivityforN-HeptaneAromatization.ACSAppl.Mater.characterizationtechniques(PDF)Interfaces2019,11,29858−29867.6468https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

8TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(6)Sun,Q.M.;Wang,N.;Zhang,T.J.;Bai,R.;Mayoral,A.;Zhang,(27)Kim,S.H.;Lim,W.T.;Kim,G.H.;Lee,H.S.;Heo,N.H.P.;Zhang,Q.H.;Terasaki,O.;Yu,J.H.Zeolite-EncagedSingle-AtomSynthesisandCrystalStructureofLeadIodideintheSodaliteCavitiesRhodiumCatalysts:Highly-EfficientHydrogenGenerationandofZeolitea(Lta).Bull.KoreanChem.Soc.2006,27,679−686.Shape-SelectiveTandemHydrogenationofNitroarenes.Angew.(28)Kim,H.S.;Yoon,K.B.PreparationandCharacterizationofChem.,Int.Ed.2019,58,18570−18576.CdsandPbsQuantumDotsinZeoliteYandTheirApplicationsfor(7)Qiu,J.Z.;Hu,J.B.;Lan,J.G.;Wang,L.F.;Fu,G.Y.;Xiao,R.J.;NonlinearOpticalMaterialsandSolarCell.Coord.Chem.Rev.2014,Ge,B.H.;Jiang,J.X.PureSiliceousZeolite-SupportedRuSingle-263−264,239−256.AtomActiveSitesforAmmoniaSynthesis.Chem.Mater.2019,31,(29)Chen,W.;Wang,Z.G.;Lin,Z.J.;Qian,J.J.;Lin,L.Y.New9413−9421.ObservationontheFormationofPbsClustersinZeolite-Y.Appl.(8)Dong,B.;Retoux,R.;deWaele,V.;Chiodo,S.G.;Mineva,T.;Phys.Lett.1996,68,1990−1992.Cardin,J.;Mintova,S.SodaliteCagesofEmtZeoliteConfined(30)Kim,S.H.;Heo,N.H.;Kim,G.H.;Hong,S.B.;Seff,K.NeutralMolecular-LikeSilverClusters.MicroporousMesoporousPreparation,CrystalStructure,andThermalStabilityoftheCadmiumMater.2017,244,74−82.SulfideNanoclustersCd6s44+andCd2na2s4+intheSodaliteCavities(9)Nozue,Y.;Tang,Z.K.;Goto,T.ExcitonsinPbi2ClustersofZeolitea(Lta).J.Phys.Chem.B2006,110,25964−25974.IncorporatedintoZeoliteCages.SolidStateCommun.1990,73,531−(31)Togashi,N.;Sakamoto,Y.;Ohsuna,T.;Terasaki,O.Arrayed534.Pbi2ClustersintheSpacesofZeoliteLta.Mater.Sci.Eng.,A2001,(10)KangTang,Z.;Nozue,Y.;Goto,T.QuantumSizeEffectonthe312,267−273.Excited-StateofHgi2,Pbi2andBii3ClustersandMoleculesin(32)Ye,S.;Sun,J.Y.;Han,Y.H.;Zhou,Y.Y.;Zhang,Q.Y.ZeoliteLta.J.Phys.Soc.Jpn.1992,61,2943−2950.ConfiningMn(2+)-DopedLeadHalidePerovskiteinZeolite-Yas(11)Tang,Z.K.;Nozue,Y.;Terasaki,O.;Goto,T.FrenkelExcitonsUltrastableOrange-RedPhosphorCompositesforWhiteLight-inOrderedPbi2ClustersIncorporatedintoZeolite.Mol.Cryst.Liq.EmittingDiodes.ACSAppl.Mater.Interfaces2018,10,24656−24664.Cryst.Sci.Technol.,Sect.A1992,218,61−66.(33)Li,C.;Zhang,Q.;Mayoral,A.TenYearsofAberration(12)Sarwar,S.;Ko,K.-W.;Han,J.;Han,C.-H.;Jun,Y.;Hong,S.CorrectedElectronMicroscopyforOrderedNanoporousMaterials.ImprovedLong-TermStabilityofDye-SensitizedSolarCellbyZeoliteChemCatChem2020,12,1248−1269.AdditiveinElectrolyte.Electrochim.Acta2017,245,526−530.(34)Mayoral,A.;delAngel,P.;Ramos,M.ElectronMicroscopy(13)Lee,H.;Kim,H.S.Work-FunctionEngineeringinLeadSulfideTechniquestoStudyStructure/FunctionRelationshipsinCatalyticandCadmiumSulfideQuantumDotsIncorporatedintoZeoliteYMaterials.InAdvancedCatalyticMaterials:CurrentStatusandFutureUsingIonExchange.Part.Part.Syst.Charact.2016,33,126−131.Progress;Domínguez-Esquivel,J.;Ramos,M.M.,Eds.;Springer:(14)Baekelant,W.;etal.ConfinementofHighlyLuminescentLeadCham,2019;pp97−128.ClustersinZeoliteA.J.Phys.Chem.C2018,122,13953−13961.(35)Li,J.;Zhang,C.;Jiang,J.;Yu,J.;Terasaki,O.;Mayoral,A.(15)Leiggener,C.;Calzaferri,G.SynthesisandLuminescenceStructureSolutionandDefectAnalysisofanExtra-LargePoreZeolitePropertiesofAg2sandPbsClustersinZeoliteA.Chem.-Eur.J.2005,withUtlTopologybyElectronMicroscopy.J.Phys.Chem.Lett.2020,11,7191−7198.11,3350−3356.(16)Fenwick,O.;etal.TuningtheEnergeticsandTailoringthe(36)Mayoral,A.;etal.DirectAtomic-LevelImagingofZeolites:OpticalPropertiesofSilverClustersConfinedinZeolites.Nat.Mater.Oxygen,SodiuminNa-LtaandIroninFe-Mfi.Angew.Chem.,Int.Ed.2016,15,1017−1022.2020,59,19361−19721.(17)Terasaki,O.;Tang,Z.K.;Nozue,Y.;Goto,T.Pbi2Confinedin(37)Zhang,Q.;Mayoral,A.;Li,J.;Ruan,J.;Alfredsson,V.;Ma,Y.;theSpacesofLtaZeolites.MRSOnlineProc.Libr.1991,233,139−Yu,J.;Terasaki,O.ElectronMicroscopyStudiesofLocalStructural143.ModulationsinZeoliteCrystals.Angew.Chem.,Int.Ed.2020,19403−(18)DeCremer,G.;etal.CharacterizationofFluorescenceinHeat-19413.TreatedSilver-ExchangedZeolites.J.Am.Chem.Soc.2009,131,(38)Okunishi,E.;Ishikawa,I.;Sawada,H.;Hosokawa,F.;Hori,M.;3049−3056.Kondo,Y.VisualizationofLightElementsatUltrahighResolutionby(19)http://www.iza-online.org.StemAnnularBrightFieldMicroscopy.Microsc.Microanal.2009,15,(20)Ming,D.;Allen,E.UseofNaturalZeolitesinAgronomy,164−165.Horticulture,andEnvironmentalSoilRemediation.Rev.Mineral.(39)Okunishi,E.;Sawada,H.;Kondo,Y.ExperimentalStudyofGeochem.2001,45,619−654.AnnularBrightField(Abf)ImagingUsingAberration-Corrected(21)Moliner,M.;Diaz-Cabanas,M.J.;Fornes,V.;Martinez,C.;ScanningTransmissionElectronMicroscopy(Stem).Micron2012,Corma,A.SynthesisMethodology,Stability,Acidity,andCatalytic43,538−544.Behaviorofthe18×10MemberRingPoresItq-33Zeolite.J.Catal.(40)Weitkamp,J.;Schumacher,R.Proceed.Ninthhit.Zeo.Conf.;von2008,254,101−109.Ballmoos,R.;Higgins,J.B.;Treacy,M.M.J.,Eds.;Butterworth-(22)Kokotailo,G.T.;Ciric,J.SynthesisandStructuralFeaturesofHeinemann,1993;p353.ZeoliteZsm-3.Adv.Chem.Ser.1971,101,109−121.(41)Burla,M.C.;Caliandro,R.;Carrozzini,B.;Cascarano,G.L.;(23)Delprato,F.;Delmotte,L.;Guth,J.L.;Huve,L.SynthesisofCuocci,C.;Giacovazzo,C.;Mallamo,M.;Mazzone,A.;Polidori,G.NewSilica-RichCubicandHexagonalFaujasitesUsingCrown-Ether-CrystalStructureDeterminationandRefinementViaSir2014.J.Appl.BasedSupramoleculesasTemplates.Zeolites1990,10,546−552.Crystallogr.2015,48,306−309.(24)Baerlocher,C.;McCusker,L.B.;Chiappetta,R.Locationofthe(42)Woo,J.;Guliants,V.V.Qstem-BasedHaadf-StemImage18-Crown-6TemplateinEmc-2(Emt).RietveldRefinementoftheAnalysisofMo/VDistributioninMovtetaoM1PhaseandTheirCalcinedandas-SynthesizedForms.MicroporousMater.1994,2,CorrelationswithSurfaceReactivity.Appl.Catal.,A2016,512,27−269−280.35.(25)Derakhshankhah,H.;Jafari,S.;Sarvari,S.;Barzegari,E.;(43)Ishizuka,K.;Eilers,P.H.C.;Kogure,T.OptimalNoiseFiltersMoakedi,F.;Ghorbani,M.;Varnamkhasti,B.S.;Jaymand,M.;Izadi,inHigh-ResolutionElectronMicroscopy.Microsc.Today2007,16−Z.;Tayebi,L.BiomedicalApplicationsofZeoliticNanoparticles,with20.anEmphasisonMedicalInterventions.Int.J.Nanomed.2020,15,(44)Terasaki,O.;Ohsuna,T.WhatCanWeObserveinZeolite363−386.RelatedMaterialsbyHrtem?Catal.Today1995,23,201−218.(26)Chen,X.Y.;Nik,O.G.;Rodrigue,D.;Kaliaguine,S.Mixed(45)Alfredsson,V.;Ohsuna,T.;Terasaki,O.;Bovin,J.O.MatrixMembranesofAminosilanesGraftedFau/EmtZeoliteandInvestigationoftheSurfaceStructureoftheZeolitesFauandEmtCross-LinkedPolyimideforCO2/CH4Separation.Polymer2012,53,byHigh-ResolutionTransmissionElectronMicroscopy.Angew.3269−3280.Chem.,Int.Ed.1993,32,1210−1213.6469https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

9TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(46)Anderson,M.W.;Pachis,K.S.;Prebin,F.;Carr,S.W.;Terasaki,O.;Ohsuna,T.;Alfreddson,V.IntergrowthsofCubicandHexagonalPolytypesofFaujasiticZeolites.J.Chem.Soc.,Chem.Commun.1991,1660−1664.(47)Treacy,M.M.J.;Vaughan,D.E.W.;Strohmaier,K.G.;Newsam,J.M.IntergrowthSegregationinFau-EmtZeoliteMaterials.Proc.R.Soc.A1996,452,813−840.(48)González,G.;González,C.S.;Stracke,W.;Reichelt,R.;García,L.NewZeoliteTopologiesBasedonIntergrowthsofFau/EmtSystems.MicroporousMesoporousMater.2007,101,30−42.(49)Okunishi,E.;Ishikawa,I.;Sawada,H.;Hosokawa,F.;Hori,M.;Kondo,Y.VisualizationofLightElementsatUltrahighResolutionbyStemAnnularBrightFieldMicroscopy.Microsc.Microanal.2009,15,164−165.(50)Findlay,S.D.;Shibata,N.;Sawada,H.;Okunishi,E.;Kondo,Y.;Ikuhara,Y.DynamicsofAnnularBrightFieldImaginginScanningTransmissionElectronMicroscopy.Ultramicroscopy2010,110,903−923.6470https://dx.doi.org/10.1021/acs.jpcc.1c00550J.Phys.Chem.C2021,125,6461−6470

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭