秦山核电三期工程取水口冲淤变化研究和预测

秦山核电三期工程取水口冲淤变化研究和预测

ID:9599299

大小:70.50 KB

页数:9页

时间:2018-05-03

秦山核电三期工程取水口冲淤变化研究和预测_第1页
秦山核电三期工程取水口冲淤变化研究和预测_第2页
秦山核电三期工程取水口冲淤变化研究和预测_第3页
秦山核电三期工程取水口冲淤变化研究和预测_第4页
秦山核电三期工程取水口冲淤变化研究和预测_第5页
资源描述:

《秦山核电三期工程取水口冲淤变化研究和预测》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、秦山核电三期工程取水口冲淤变化研究和预测摘要:本文采用河床演变分析的方法研究秦山核电三期工程取水口附近海床的冲淤变化,并用数学模型和实体模型在验证的基础上进行了近期变化预测,为核电厂安全运行数十年和保证循环冷却水正常供水提供了科学依据。关键词:河床演变数学模型实体模型预测1前言  秦山核电三期工程位于毗邻钱塘江河口的杭州湾顶附近的秦山、螳螂山(图1)。三期工程拟建二台Candub重水堆机组,装机容量为150万k3/s。由于取水口所在海域潮强流急、含沙量大,又是杭州湾北岸深槽的末段,海床受上游钱塘江河口径流丰、平、枯的变化和围垦(钱塘江河口上游已围近百万亩)的影响而发生剧

2、烈的冲淤变化,下游又受杭州湾北岸深槽冲淤变化的制约,因而取水口附近水域的水流、泥沙运动和海床冲淤变化尤为复杂。另外,三期工程需在螳螂山两侧的山岙海滩上围海造地作为厂区(见图2),从而改变了取水口附近的水流条件。此外,为进一步治理钱塘江河口,规划在邻近秦山水域的尖山河湾还将继续围涂缩窄,以及开发杭州湾南岸庵东滩面的海涂资源,由于过去钱塘江的治江围涂缩窄已对秦山水域产生了一定的淤积影响,下阶段的治江围涂越向下游发展,离秦山核电就越近,影响更直接。为保证核电厂四十年循环冷却水的正常供水和安全运行,必须研究取水口附近的水流、泥沙运动和河床冲淤变化,以及对各种影响因素进行预测。为

3、此,采用河床演变分析的方法研究核电三期取水口附近的冲淤变化,并用经验公式进行了预测。同时还采用数学模型计算和实体模型试验两种手段在实测资料验证的基础上,考虑影响近期变化的因素进行了冲淤变化预测。采用三种方法共同研究,取长补短、共同论证,使结论更可靠。2取水口冲淤变化分析研究  由于取水口所处的特殊地理位置决定了它的冲淤变化不仅与杭州湾、钱塘江大范围的冲淤变化有关,尤其是杭州湾北岸深槽的冲淤变化有关,还与秦山深潭冲淤变化有关。分析研究中运用了钱塘江河口40多年和杭州湾30多年的实测地形资料,还有厂区附近10多次比尺较大(1/万)的测图,再结合多年来的水文观测和测验资料,来

4、分析研究河床的冲淤变化规律和机理,这些丰富的地形资料综合反映了水流、泥沙、河势和河床形态的变化,既包括了天然水文年的变化,也包括了人类活动(建库和围涂等)的影响。2.1杭州湾北岸深槽的冲淤变化  杭州湾北岸金山至秦山、杨柳山有一条长54km、平均水深7~10m的深槽,称之为杭州湾北岸深槽。秦山核电取水口位于杭州湾北岸深槽的末段这一大环境中。因而深槽的冲淤变化,将直接影响到取水口的运行。图1秦山核电位置示意图SchematiclocationplanofQinshanNuclearPoalstyle="TEXT-ALIGN:center"align=center>图2取水

5、口位置图Locationplanofalstyle="TEXT-ALIGN:left"align=left>  计算分析1959年和1998年两次测图离岸3.0km(深槽范围)、高程-2.0以下的深槽容积变化可知,北岸深槽的上段(场前以上)40年来是淤积的,累计淤积0.76亿m3。场前以下至金山段是冲刷的,累计冲刷0.77亿m3。2.2秦山深潭的冲淤变化和形成机理  在杭州湾北岸深槽稳定性分析的基础上,根据40余年来厂区水域的10多次较大比尺(1/万)测图分析,秦山深潭自1971年以来至1988年,多年来呈累计淤积的变化,总计淤积4177万m3,平均淤厚5.0m,-18

6、m以下深潭面积减小42.8%,而1988年以来变化不大,基本趋于稳定,仅有季节性的冲淤变化(呈“夏淤冬冲”的特点)。其淤积原因是由于河口段60年代和70年代末遭受连续枯水年加上大规模的围垦引起的,且淤积的时空分布有滞后现象。其淤积和面积缩小的部位主要在离岸的三个方向,而近岸边没有单向累积性的淤积变化。  秦山深潭是由于秦山、螳螂山在平面上凸出岸线300m以上,形似一座丁坝。涨、落潮流由于丁坝的绕流作用而形成坝头附近的上升、下降的螺旋流,水流集中冲刷形成类似于坝头的冲刷坑。另外还有道罗山岛屿的绕流冲刷作用。运用张定邦[1]以实验资料为基础的公式(1)式中k为与边坡系数有关

7、的系数,k=f(m);h0为行近水深;V为行近流速;ds为大于某粒径重量百分数5%所对应的粒径;d为平均粒径;α为水流与坝轴线交角。计算冲刷坑最大深度h,当流速达3~4m/s时,坑底高程可冲深到-30~40m左右,与实际情况基本一致。2.3取水口附近冲淤变化取水口底设计标高为-13m。根据历年水下地形图分析,取水口附近在矶头绕流和回流的作用下,形成一个深水陡坡,-13m线比较稳定,平面摆动不大,最大摆幅为20~40m,越近矶头头部越稳定,只要取水口离岸一定距离布置时,完全可以满足设计标高要求。虽然秦山深潭多年来呈淤积趋势,但历

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。