资源描述:
《All Polycarbonate Elastomers Based on Triblock Copolymers Derived from Triethylborane-Mediated Copolymerization of Epoxides CO 2 with Va》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
SupportinginformationforAllPolycarbonateElastomersBasedonTriblockCopolymersDerivedfromTriethylborane-MediatedCopolymerizationofEpoxidesCO2withVariousEpoxidesMingchenJia,†DongyueZhang,†GijsW.deKort,‡CarolusH.R.M.Wilsens,‡SanjayRastogi,‡NikosHadjichristidis,†YvesGnanou,*†andXiaoshuangFeng*††PhysicalSciencesandEngineeringDivisionandKAUSTCatalysisCenter,KingAbdullahUniversityofScienceandTechnology(KAUST),Thuwal23955,SaudiArabia‡Aachen-MaastrichtInstituteofBiobasedMaterials(AMIBM),MaastrichtUniversity,P.O.Box616,6200MDMaastricht,TheNetherlandsS1
1CONTENTSEXPERIMENTALSECTIONFigureS1.1HNMRofPBCinCDCl3.FigureS2.1HNMRofPHCinCDCl3.FigureS3.1HNMRofPBGECinCDCl3.FigureS4.1HNMRofPEHGECinCDCl3.FigureS5.1HNMRofPAGECinCDCl3.FigureS6.1HNMRshowstheinteractionsofepoxideswithTEB:(A)BGEandEHGEmixedwithequalequivalentofTEB;(B)AGEmixedwith4equivalentsofTEB.FigureS7.DSCcurveofPBC(Entry3,Table1)ataheatingrateof10oC/min.FigureS8.DSCcurveofPHC(Entry10,Table1)ataheatingrateof10oC/min.FigureS9.DSCcurveofPOC(Entry5,Table1)ataheatingrateof10oC/min.FigureS10.DSCcurveofPOC(Entry17,Table1)ataheatingrateof10oC/min.FigureS11.DSCcurveofPBGEC(Entry12,Table1)ataheatingrateof10oC/min.FigureS12.DSCcurveofPBGEC(Entry18,Table1)ataheatingrateof10oC/min.FigureS13.DSCcurveofPAGEC(Entry15,Table1)ataheatingrateof10oC/min.FigureS14.DSCcurveofPEHGEC(Entry19,Table1)ataheatingrateof10oC/min.FigureS15.DSCcurvesofthetriblockcopolymersinhightemperaturerange.S2
2FigureS16.Phaseangleandtanδofthetriblockcopolymersasafunctionoftemperature.TableS1.EstimationofMeUsingGuth-Smallwoodapproximation.FigureS17.CyclictensilecurveforP(C-O-C)1withultimatestressof1.5MPaandnodelaybetweencycles.FigureS18.CyclictensilecurveforP(C-O-C)2withultimatestressof1.5MPaandnodelaybetweencycles.S3
3EXPERIMENTALSECTIONMaterialsAllthereagentswerepurchasedfromSigma-Aldrichandusedasreceivedunlessotherwisestated.BO,HO,OO,BGE,EHGE,AGEandtetrahydrofuran(THF)werepurifiedbydistillingfirstlyoverCaH2andthenovern-butyllithiumforfourtimesusingstandardSchlenktechnique.Then-butyllithiumreactswithbothproticimpuritiessuchaswaterandasmallquantityofepoxides.Inthisway,ultra-drymonomersandsolventfreeofproticimpuritiescanbeobtained.ThepurifiedmonomerandsolventwerestoredinSchlenkflasksandkeptinaglovebox.Bis(triphenylphosphine)iminiumchloride(PPNCl)waspurifiedbydissolvinginethanolandprecipitatingfromdiethyletherthreetimesandthendryingundervacuumtoremovethesolvents.Tetrabutylammoniumchloride(TBACl)wasrecrystallizedfromcoldn-hexaneanddriedinavacuumoven.1,4-Di(hydroxymethyl)benzene(DHMB)waspurifiedthroughsublimation.ThetracesofwaterintheinitiatorswereremovedbydryingtheinitiatorsundervacuuminthepresenceofP2O5for2days.CO2wasprovidedbyAirLiquidAlKhafranIndGaseswithnominalpurityof99.995%.SuperdryCO2wasobtainedbypassingitthoughtriisobutylaluminum(TiBA)asreportedinourpreviouswork.1Instrumentation1HNMRspectrawererecordedonaBrukerAVANCEIII-400HzinstrumentinCDCl3.GPCtraceswereacquiredonaVISCOTEKVE2001systemequippedwiththeStyragelHR2THFandStyragelHR4THFusingTHF(1mL/min)astheeluent.Therelativemolarmassesanddistributionswereobtainedat35oCusingaRIDdetectorandagainstlinearpolystyrenestandards.InsituFourier-transforminfraredspectroscopy(FTIR)studyoftheTEB-mediatedS4
4copolymerizationofepoxideswithCO2wasconductedusingaReactIR700system(MettlerToledo).TheFTIRprobewasinsertedintothereactionmediumthroughathreadedholeinthereactorlidwhereairtightnesscanbeguaranteed.Thereactorwasflame-driedundervacuumbeforethereagentswereadded.Themonomerwasfirstintroducedintothereactorandafterequilibrationat60oCfor20min.TheinitiatorsolutionofTEBwasthenadded.Immediatelyafter,theCO2waschargedto20bar.Theinitialconcentrationfortheepoxidewasfixedtobe5mol/L.Thebackgroundwascollectedatthebeginningofthereaction.TheFTIRspectrawerecollectedatinitialtimeandatanintervalof3min;foreachspectra128scanswereconducted.TheFTIRdatawereprocessedandanalyzedusingtheiCIR7.1software.Differentialscanningcalorimetry(DSC)measurementswereperformedataheatingrateof10oC/minor20oC/minonaMettlerToledoDSC1/TC100systemundernitrogenatmosphere.Thecurveofthesecondheatingscanwasadoptedtodeterminetheglasstransitiontemperature(Tg).Thermogravimetricanalysis(TGA)experimentswereperformedonaTGAQ500analyzer(TAInstruments).Sampleswereheatedfrom25oCto650oCataheatingrateof10oC/minunderN2atmosphere.Atomicforcemicroscopy(AFM)wasconductedonaBrukerDimensionIconSPMscannerinatappingmode.TheBrukerRTESPA-300AFMprobewasemployedinthestudy.Thinfilmswerespin-coatedonsiliconwaferscoatedwithSiO2fromtheTHFsolutionsofthetriblockcopolymers(2wt%).Thesampleswerelefttodryatroomtemperaturebeforeanalysis.TheimagesobtainedwereprocessedusingtheGwyddionsoftware.TheviscoelasticbehaviorsofthetriblockcopolymersweredeterminedonaTAInstrumentsDiscoveryHR2rheometerwithparallelplategeometry(diameterof25mm,gapof1mm).Thetriblockcopolymerswereprocessedat140oCinaDSMXploretwin-screwmicro-extruderwithabarrelsizeof5mL.Tensilebarswithadimensionof2mm×4mm×70mmwereproducedinaDSMXploreIM5.5micro-injectionmolder.ThebarreltemperaturewasS5
5setat140oCwhilethemoldtemperaturewas25°C.TensiletestswereperformedusingaZwickZ100universaltestingmachineondog-boneshapetensilebars.Thesampleswerestretchedatarateof50mm/minatroomtemperatureanda10kNloadcellwasemployed.CopolymerizationofCO2withEpoxidesInaglovebox,toapre-driedParrautoclavewereaddedtheinitiator(PPNCl,TBAClorDHMB),THFandEt3B(1MinTHF).InthecaseofDHMBusedasprecursortotheinitiator,equalequivalentsofphosphazenebaseP4-t-Bu(0.8Minhexane)tothatofDHMBwasaddedtodeprotonatethehydroxylgroups.ThentheautoclavewaschargedwithCO2toreachapressureof10bar.TheepoxidewasaddedtotheinitiatingsystemeitherbeforeorafterCO2charging.TheepoxideswereaddedafterCO2chargingwhenpolyetherscanformbeforeCO2wasintroducedinthereactor.TheprocedureofaddingepoxideafterCO2chargingisasfollows:thereactorwasplacedinliquidnitrogen;thentheepoxidewasinjectedintothereactorthroughaseptumafterthepressureinsidethereactordroppedtoambientpressure.Anotheroptionwastouseaseparatevialcontainingtheepoxidesandplacedinthereactor.ThevialwasbrokentofreetheepoxideafterCO2charging.Afterwards,thereactorwasplacedinanoilbathwiththetemperaturesetat60oC.Afterstirringatarateof200rpmfor12hours,thereactionsystemwascooleddownwithanice/waterbath.AfterresidualCO2wasreleased,thereactionsystemwasquenchedwithHClsolution(1MinTHF).Analiquotofthecrudeproductwastakenfor1HNMRanalysistodeterminetheselectivityandconversion.Theresultingpolycarbonatewaspurifiedbyrepeatedprecipitationfrommethanol.Thentheyieldwasobtainedbyweighingthepolycarbonatedriedundervacuumovernight.Thepolycarbonatecontentwasdeterminedfrom1HNMRspectraofpurepolycarbonates.SynthesisofPCHC-b-POC-b-PCHCTriblockCopolymersS6
6Thesynthesisofthemiddleblockofthetriblockcopolymerfollowedtheproceduredescribedabove.OOwasselectedastheepoxidemonomerandthedifunctionalinitiatorDHMBwasemployedtogetherwithequalequivalentsofP4-t-Bu.After60hours,thereactorwasplacedinliquidnitrogen.CHOwasinjectedintothereactionmediumafterthepressureinsidethereactordroppedtoambientpressure.Thereactionmediumwasstirredforanother12hoursat60oC.Thenthereactorwascooledwithanice/waterbath.AfterresidualCO2wasreleased,thereactionsystemwasquenchedwithHClsolution(1MinTHF).Analiquotofthecrudeproductwastakenfor1HNMRanalysistodeterminetheselectivity.Theresultingpolycarbonatewaspurifiedbyrepeatedprecipitationfrommethanol.Thenthetriblockcopolymersweredriedundervacuumovernightresultinginanoverallyieldabove85%.Thecompositionsofthetriblockcopolymersweredeterminedfromthe1HNMRspectraofthepureproducts.FigureS1.1HNMRofPBCinCDCl3.S7
7FigureS2.1HNMRofPHCinCDCl3.FigureS3.1HNMRofPBGECinCDCl3.S8
8FigureS4.1HNMRofPEHGECinCDCl3.FigureS5.1HNMRofPAGECinCDCl3.S9
9FigureS6.1HNMRshowstheinteractionsofepoxideswithTEB:(A)BGEandEHGEmixedwithequalequivalentofTEB;(B)AGEmixedwith4equivalentsofTEBFigureS7.DSCcurveofPBC(Entry3,Table1)ataheatingrateof10oC/min.S10
10FigureS8.DSCcurveofPHC(Entry10,Table1)ataheatingrateof10oC/min.FigureS9.DSCcurveofPOC(Entry5,Table1)ataheatingrateof10oC/min.S11
11FigureS10.DSCcurveofPOC(Entry17,Table1)ataheatingrateof10oC/min.FigureS11.DSCcurveofPBGEC(Entry12,Table1)ataheatingrateof10oC/min.S12
12FigureS12.DSCcurveofPBGEC(Entry18,Table1)ataheatingrateof10oC/min.FigureS13.DSCcurveofPAGEC(Entry15,Table1)ataheatingrateof10oC/min.S13
13FigureS14.DSCcurveofPEHGEC(Entry19,Table1)ataheatingrateof10oC/min.FigureS15.DSCcurvesofthetriblockcopolymersinhightemperaturerange.S14
14FigureS16.Phaseangleandtanδofthetriblockcopolymersasafunctionoftemperature.TableS1.EstimationofMeUsingGuth-Smallwoodapproximation1.2G’orGn(Φ)G0nMepolymerΦ1+2.5Φ+14.1ΦTemperature/K(MPa)(MPa)(kg/mol)P(C-O-C)10.191.983480.110.05562P(C-O-C)20.222.233480.140.06355Inthetable,Φrepresentsthevolumefractionofhardblock;G’thestoragemodulus;G0nthecontributionduetoentanglementofsoftblock,calculatedaccordingtotheequationGn(Φ)=G0n(1+2.5Φ+14.1Φ2);Methemolarmassbetweenentanglements.MeiscalculatedaccordingtotheequationMe=ρRT/G0n,2whereρrepresentsthedensityofthepolymer(1.2g/cm3istakenforpolycarbonate),Rrepresentstheuniversalgasconstantwithavalueof8.314J·mol-1·K-1andTinKthetemperature.S15
15Weassumedthatthesoftblockandthehardblockhavethesamedensityandthustheweightfractionofthehardblockequalstothevolumefraction.Wealsoignoredthedependenceofdensityonthetemperature.FigureS17.CyclictensilecurveforP(C-O-C)1withultimatestressof1.5MPaandnodelaybetweencycles.FigureS18.CyclictensilecurveforP(C-O-C)2withultimatestressof1.5MPaandnodelaybetweencycles.S16
16REFERENCES1.Jia,M.C.;Hadjichristidis,N.;Gnanou,Y.;Feng,X.S.,Monomodalultrahigh-molar-masspolycarbonatehomopolymersanddiblockcopolymersbyanioniccopolymerizationofepoxideswithCO2.ACSMacroLett.2019,8(12),1594-1598.2.Guth,E.,Theoryoffillerreinforcement.J.Appl.Phys.1945,16(1),20-25.3.Tong,J.D.;Jerôme,R.,Dependenceoftheultimatetensilestrengthofthermoplasticelastomersofthetriblocktypeonthemolecularweightbetweenchainentanglementsofthecentralblock.Macromolecules2000,33(5),1479-1481.S17