2、不存在,请说明理由.3.已知函数f(x)=ax+xlnx的图象在x=e(e为自然对数的底数)处的切线的斜率为3.(1)求实数a的值;(2)若f(x)≤kx2对任意x>0成立,求实数k的取值范围;(3)当n>m>1(m,n∈N*)时,证明:.新课标2018届高考数学二轮复习专题能力训练4.设函数f(x)=ax2-a-lnx,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)>-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).新课标2018届高考数学二轮复习专题能力训练5.设函数f(x)=alnx,g(x)=x2.(1)记g'(x)为g(x)的
3、导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]内有解,求实数a的取值范围;(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.6.已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.思维提升训练新课标2018届高考数学二轮复习专题能力训练7.已知函数f(x)=x3+x2+a
4、x+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.参考答案专题能力训练8 利用导数解不等式及参数的取值范围能力突破训练1.解(1)由f'(x)=lnx-2ax+2a,可得g(x)=lnx-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x时,g'(x)>0,函数g(x)单调递增,x时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为(2)由(1)知,f'(1)=0.①当a≤0
5、时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当01,由(1)知f'(x)在区间内单调递增,新课标2018届高考数学二轮复习专题能力训练可得当x∈(0,1)时,f'(x)<0,x时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合
6、题意.④当a>时,0<<1,当x时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>2.解(1)f'(x)=(x2-1)ex,令f'(x)=0解得x=-1或x=1,因为ex>0,且在区间(-∞,-1)和(1,+∞)内f'(x)>0,在区间(-1,1)上f'(x)<0,所以函数f(x)=(x2-2x+1)ex的单调递增区间是(-∞,-1)和(1,+∞),单调递减区间是(-1,1).(2)由(1)知函数f(x)=(x2-2x+1)ex在区间(1,+∞)上单调递增,若存在“域同区间”[s
7、,t](11使得g'(x)<0恒成立,g(x)=在区间(1,+∞)内是单调递减的,且g(x)h(1)=0;所