欢迎来到天天文库
浏览记录
ID:8136287
大小:5.25 MB
页数:110页
时间:2018-03-06
《高盛:人工智能、机器学习和数据将推动未来生产力的发展》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、人工智能、机器学习和数据将推动未来生产力的发展高盛人工智能是信息时代的尖端技术。在最新的“创新简介”系列文件中,我们研究机器学习和深度学习的进步如何与更强大的计算和不断扩大的数据库相结合,为跨行业的公司带来人工智能变革。人工智能服务的发展有可能开辟新的市场,破坏云计算的竞争环境。我们相信,如何更好地利用人工智能将成为未来几年公司竞争优势的决定因素,并将带来生产力的复苏。目录投资组合经理总结.什么是人工智能?.价值创造的关键驱动力.推动生产力的未来.人工智能和生产力的悖论:专访JanHatzius.生态云服务开源人工智能投资周期的受益者.农业.金融.医疗保健.能源.
2、推动者.附录.投资组合经理总结人工智能(AI)是信息时代的尖端技术。从人类告诉计算机如何操作到计算机学着如何自主操作是计算机运作领域一次巨大的飞跃,对每一个行业都有着重要的意义。虽然现在可能被视为人工智能寒冬前最新一轮的承诺和失望,这些投资和新技术将至少留给我们机器学习所生产的有形的经济效益。与此同时,人工智能和自动驾驶已经上升到了流行文化的前沿,甚至是政治话题,但是我们过去一年以来的研究让我们相信,这不是一个错误的开始,而是一个拐点。本报告将深入探讨这个拐点,从明显的更多更快的计算以及数据爆炸到更微妙的深度学习、显著进步专业硬件和开源的兴起。其中一个更令人兴奋的人工
3、智能方面的拐点是,“现实世界”的使用案例比比皆是。而深度学习使得计算机视觉和自然语言处理等技术不断进步,大幅提升了苹果的Siri,亚马逊的Alexa的质量和谷歌的图片识别,人工智能不仅仅是技术的技术。大数据集与强大的技术相结合创造了价值,也获得了竞争优势。例如,在医疗保健中,图像识别技术可以提高癌症诊断的准确性。在农业中,农民和种子生产者可以利用深度学习技术来提高作物产量。在药物方面,深度学习用于药物发现。在能源领域,勘探效率和设备可用性逐步提高。在金融服务中,通过打开了新的数据集,成本降低收益增加,分析比以前更快。人工智能的运用善且处于非常早期的阶段,必要的技术通过
4、基于云的服务,我们相信创新的浪潮的创新将滚滚而来,创造出各行各业新的赢家和输家。人工智能的广泛适用性也让我们得出这样的结论:它是一个针移动技术,为全球经济和生产力提供驱动力,并结束美国生产率增长的停滞期。根据高盛首席经济学家JanHatzius的研究,我们的框架目前停滞在资本深化及其对美国生产力的相关影响。我们认为,人工智能技术驱动对生产力的改进将与20世纪90年代相似,带动企业投入更多的资本和劳动密集型项目,来加快发展,提高盈利能力和扩大股权估值。启示虽然我们看到人工智能影响每一个公司,行业和细分经济的时间,其中有四个最为显著的对投资者的启示。生产力。人工智能和机器
5、学习有可能掀起一个循环的生产率增长从而有利于经济增长,企业盈利,资本回报和资产估值。根据高盛首席经济学家JanHatzius“原则上,人工智能看起来确实像可能用数据捕获得更为准确,相较于人工智能所能达到的最后一拨创新浪潮去降低高附加值生产类型的成本和劳动力投入。例如在商业部门的为了节约成本的创新是统计学家比起增加iPhone应用程序的多样性和可用性而言更好地去捕获。在商业部门里,人工智能对成本结构有深远基础的影响,我相信它将被统计学家所接受,并且会显示在整体生产力数据中。高级技术。人工智能的速度和机器学习的价值有可能扭转在构建数据中心和网络时更便宜的商品硬件的趋势。我
6、们认为这可能推动硬件,软件和服务支出的市场份额大幅度转变。例如,在标准数据中心瞬时计算上运行的AWS工作负载只需要0.0065美元每小时,而对于为人工智能优化的GPU成本为0.900美元每小时。竞争优势。我们看到了人工智能和机器学习重新整理每个行业的竞争秩序的潜力。管理团队未能投资和传递这些技术风险给受益于战略情报、生产所得以及创造的资本效率的竞争者。在第41页开始的小插曲中,我们将研究如何在医疗保健,能源,零售,金融和农业领域发展这些竞争优势。创建新公司。我们在过去10年人工智能和机器学习领域创立的企业中确定了150多家私人公司(附录69-75)。虽然我们相信,人工
7、智能大部分的价值将会积累于大公司的资源,数据和投资能力,我们期望风险资本家,企业家和技术专家将继续推动创建新的公司,反过来,驱动实质创新和价值创造至少是并购虽然我们当然不会排除人工智能中的“谷歌或Facebook”的出现。在下面的内容中,我们深入探讨了人工智能的技术,历史,机器学习的生态系统,以及这些技术在行业和领先公司的应用。什么是人工智能?人工智能是使智能机器和计算机程序能够以通常需要人类智能的方式学习和解决问题的科学和工程。通常,这些包括自然语言处理和翻译,视觉感知和模式识别以及决策,但应用程序的数量和复杂性正在迅速扩大。在本报告中,我们将大部
此文档下载收益归作者所有