modelling multivariate counts varying continuously in space

modelling multivariate counts varying continuously in space

ID:7280031

大小:785.98 KB

页数:31页

时间:2018-02-10

modelling multivariate counts varying continuously in space_第1页
modelling multivariate counts varying continuously in space_第2页
modelling multivariate counts varying continuously in space_第3页
modelling multivariate counts varying continuously in space_第4页
modelling multivariate counts varying continuously in space_第5页
资源描述:

《modelling multivariate counts varying continuously in space》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、ModellingMultivariateCountsVaryingContinuouslyinSpace*UniversityPressScholarshipOnlineOxfordScholarshipOnlineBayesianStatistics9JoséM.Bernardo,M.J.Bayarri,JamesO.Berger,A.P.Dawid,DavidHeckerman,AdrianF.M.Smith,andMikeWestPrintpublicationdate:2011PrintISBN-13:9780199694587PublishedtoOxfordScholarshi

2、pOnline:January2012DOI:10.1093/acprof:oso/9780199694587.001.0001ModellingMultivariateCountsVaryingContinuouslyinSpace*AlexandraM.SchmidtMarcoA.RodríguezDOI:10.1093/acprof:oso/9780199694587.003.0020AbstractandKeywordsWediscussmodelsformultivariatecountsobservedatfixedspatiallocationsofaregionofinter

3、est.OurapproachisbasedonacontinuousmixtureofindependentPoissondistributions.Themixingcomponentisabletocapturecorrelationamongcomponentsoftheobservedvectorandacrossspacethroughtheuseofalinearmodelofcoregionalization.Weintroduceheretheuseofcovariatestoallowforpossiblenon‐stationarityofthecovariancest

4、ructureofthemixingcomponent.WeanalysejointspatialvariationofcountsoffourfishspeciesabundantinLakeSaintPierre,Quebec,Canada.Modelsallowingthecovariancestructureofthespatialrandomeffectstodependonacovariate,geodeticlakedepth,showedimprovedfitrelativetostationarymodels.Keywords:AnimalAbundance,Anisotr

5、opy,LinearModelofCoregionalization,Non‐Stationarity,PoissonLog‐NormalDistribution,RandomEffectsPage1of31ModellingMultivariateCountsVaryingContinuouslyinSpace*SummaryWediscussmodelsformultivariatecountsobservedatfixedspatiallocationsofaregionofinterest.Ourapproachisbasedonacontinuousmixtureofindepen

6、dentPoissondistributions.Themixingcomponentisabletocapturecorrelationamongcomponentsoftheobservedvectorandacrossspacethroughtheuseofalinearmodelofcoregionalization.Weintroduceheretheuseofcovariatestoallowforpossiblenon‐stationarityofthecovariancestructureofthemixingcomponent.Weanalysejointspatialva

7、riationofcountsoffourfishspeciesabundantinLakeSaintPierre,Quebec,Canada.Modelsallowingthecovariancestructureofthespatialrandomeffectstodependonacovariate,geodeticlakedepth,showedimprovedfitrelativetostation

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。