欢迎来到天天文库
浏览记录
ID:7279637
大小:238.94 KB
页数:26页
时间:2018-02-10
《higher order linear equations》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、August7,201221:04C04Sheetnumber1Pagenumber221cyanblackCHAPTER4HigherOrderLinearEquationsThetheoreticalstructureandmethodsofsolutiondevelopedintheprecedingchapterforsecondorderlinearequationsextenddirectlytolinearequationsofthirdandhigherorder.Inthisc
2、hapterwebrieflyreviewthisgeneralization,takingparticularnoteofthoseinstanceswherenewphenomenamayappear,becauseofthegreatervarietyofsituationsthatcanoccurforequationsofhigherorder.4.1GeneralTheoryofnthOrderLinearEquationsAnnthorderlineardifferentialequ
3、ationisanequationoftheformdnydn−1ydyP0(t)dtn+P1(t)dtn−1+···+Pn−1(t)dt+Pn(t)y=G(t).(1)WeassumethatthefunctionsP0,...,Pn,andGarecontinuousreal-valuedfunctionsonsomeintervalI:α4、dnydn−1ydyL[y]=dtn+p1(t)dtn−1+···+pn−1(t)dt+pn(t)y=g(t).(2)ThelineardifferentialoperatorLoforderndefinedbyEq.(2)issimilartothesecondorderoperatorintroducedinChapter3.ThemathematicaltheoryassociatedwithEq.(2)iscompletelyanalogoustothatforthesecondorder5、linearequation;forthisreasonwesimplystatetheresultsforthenthorderproblem.Theproofsofmostoftheresultsarealsosimilartothoseforthesecondorderequationandareusuallyleftasexercises.221August7,201221:04C04Sheetnumber2Pagenumber222cyanblack222Chapter4.Higher6、OrderLinearEquationsSinceEq.(2)involvesthenthderivativeofywithrespecttot,itwill,sotospeak,requirenintegrationstosolveEq.(2).Eachoftheseintegrationsintroducesanarbitraryconstant.Henceweexpectthattoobtainauniquesolutionitisnecessarytospecifyninitialcon7、ditionsy(t)=y,y(t)=y,...,y(n−1)(t)=y(n−1),(3)000000wheretmaybeanypointintheintervalIandy,y,...,y(n−1)isanysetofprescribed0000realconstants.Thefollowingtheorem,whichissimilartoTheorem3.2.1,guaranteesthattheinitialvalueproblem(2),(3)hasasolutionandt8、hatitisunique.Theorem4.1.1Ifthefunctionsp1,p2,...,pn,andgarecontinuousontheopenintervalI,thenthereexistsexactlyonesolutiony=φ(t)ofthedifferentialequation(2)thatalsosatisfiestheinitialconditions(3),wheret0isanypointinI.Thissolutionexiststhroughoutthein
4、dnydn−1ydyL[y]=dtn+p1(t)dtn−1+···+pn−1(t)dt+pn(t)y=g(t).(2)ThelineardifferentialoperatorLoforderndefinedbyEq.(2)issimilartothesecondorderoperatorintroducedinChapter3.ThemathematicaltheoryassociatedwithEq.(2)iscompletelyanalogoustothatforthesecondorder
5、linearequation;forthisreasonwesimplystatetheresultsforthenthorderproblem.Theproofsofmostoftheresultsarealsosimilartothoseforthesecondorderequationandareusuallyleftasexercises.221August7,201221:04C04Sheetnumber2Pagenumber222cyanblack222Chapter4.Higher
6、OrderLinearEquationsSinceEq.(2)involvesthenthderivativeofywithrespecttot,itwill,sotospeak,requirenintegrationstosolveEq.(2).Eachoftheseintegrationsintroducesanarbitraryconstant.Henceweexpectthattoobtainauniquesolutionitisnecessarytospecifyninitialcon
7、ditionsy(t)=y,y(t)=y,...,y(n−1)(t)=y(n−1),(3)000000wheretmaybeanypointintheintervalIandy,y,...,y(n−1)isanysetofprescribed0000realconstants.Thefollowingtheorem,whichissimilartoTheorem3.2.1,guaranteesthattheinitialvalueproblem(2),(3)hasasolutionandt
8、hatitisunique.Theorem4.1.1Ifthefunctionsp1,p2,...,pn,andgarecontinuousontheopenintervalI,thenthereexistsexactlyonesolutiony=φ(t)ofthedifferentialequation(2)thatalsosatisfiestheinitialconditions(3),wheret0isanypointinI.Thissolutionexiststhroughoutthein
此文档下载收益归作者所有