欢迎来到天天文库
浏览记录
ID:6879231
大小:93.50 KB
页数:13页
时间:2018-01-29
《五年级数学思维训练》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、央子街道央子小学数学校本课程开发案例五年级上学期数学思维训练一、速算与巧算(一)课题:速算与巧算(一)适用年级:五年级奥数在线——速算与巧算(一) 计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。 我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。例1四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下: 86,78,77,83
2、,91,74,92,69,84,75。求这10名同学的总分。分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到总和=80×10+(6-2-3+3+11-6+12-11+4-5)=800+9=809。实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:通过口算,得到差数累
3、加为9,再加上80×10,就可口算出结果为809。例1所用的方法叫做加法的基准数法。这种方法适用于加数较多,而且所有的加数相差不大的情况。作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。由例1得到:13总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。 在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。例2某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,
4、429,468,439,475,461。求平均每块麦田的产量。解:选基准数为450,则累计差=12+30-7-30+23-21+18-11+25+11=50,平均每块产量=450+50÷10=455(千克)。答:平均每块麦田的产量为455千克。求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,
5、将所求数转化成一个整十数乘以另一数,再加上零头的平方数。下面通过例题来说明这一方法。例3求292和822的值。解:292=29×29 =(29+1)×(29-1)+12 =30×28+1 =840+1 =841。822=82×82=(82-2)×(82+2)+22=80×84+4=6720+4=6724。13由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。本例中,给一个29补1,就要给另一个29减1;给
6、一个82减了2,就要给另一个82加上2。最后,还要加上“移多补少”的数的平方。这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。例4求9932和20042的值。解:9932=993×993 =(993+7)×(993-7)+72 =1000×986+49 =986000+49 =986049。 20042=2004×2004=(2004-4)×(2004+4)+42 =2000×2008+16 =4016000+16=4016016。下面,我们介绍一类特殊情况的乘法的速算方法。请看下面的算式: 66×46,73×88,19
7、×44。这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。这类算式有非常简便的速算方法。例588×64=? 88×64 =(80+8)×(60+4) =(80+8)×60+(80+8)×4 =80×60+8×60+80×4+8×4 =80×60+80×6+80×4+8×4 =80×(60+6+4)+8×413 =80×(60+10)+8×4 =8×(6+1)×100+8×4。 于是,我们得到下面的速算式:由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起
8、前面的数是“个位与十位相同的因数”的十位数与“个位与
此文档下载收益归作者所有