欢迎来到天天文库
浏览记录
ID:62216937
大小:52.08 KB
页数:5页
时间:2021-04-21
《方程的根与函数的零点1教案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:§3.1.1方程的根与函数的零点教学目标:知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法零点存在性的判定.情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.教学重点:重点零点的概念及存在性的判定.难点零点的确定.教学程序与环节设计:创设情境结合二次函数引入课题.组织探究二次函数的零点及零点存在性的.尝试练习零点存在性为练习重点.探索研究进一步探索函数零点存在性的判定.作业回馈重点放在零点的存在性判断及零点的确定上.课外活动研究二次函数在零
2、点、零点之内及零点外的函数值符号,并尝试进行系统的总结.教学过程与操作设计:环节教学内容设置先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:122x30与函数yx22x3○方程x创222x10与函数yx22x1○方程x设322x30与函数y22x3○方程xx情境师生双边互动师:引导学生解方程,画函数图象,分析方程的根与图象和x轴交点坐标的关系,引出零点的概念.生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.师:上述结论推广到一般的一元二次方程和二次函数又怎样?函数零点的概念:对于函数yf(x)(xD)
3、,把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点.函数零点的意义:师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐组标.生:认真理解函数零点即:的意义,并根据函数零方程f(x)0有实数根函数yf(x)的点的意义探索其求法:织图象与x轴有交点函数yf(x)有零点.1代数法;○○几何法.2探函数零点的求法:求函数yf(x)的零点:0的实数根;○(代数法)求方程f(x)1究2○(几何法)对于不能用求根公式的方程,可以将它与函数yf(
4、x)的图象联系起来,并利用函数的性质找出零点.二次函数的零点:师:引导学生运用函数零点的意义探索二次二次函数函数零点的情况.yax2bxc(a0).1)△>0,方程ax2bxc0有两不等环节组织探究教学内容设置实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.2)△=0,方程ax2bxc0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程ax2bxc0无实根,二次函数的图象与x轴无交点,二次函数无零点.零点存在性的探索:(Ⅰ)观察二次函数f(x)x22x3的图象:2,
5、1]上有零点______;○在区间[1f(2)_______,f(1)_______,f(2)·f(1)_____0(<或>).○在区间[2,4]上有零点______;2f(2)·f(4)____0(<或>).(Ⅱ)观察下面函数yf(x)的图象○1在区间[a,b]上______(有/无)零点;f(a)·f(b)_____0(<或>).○2在区间[b,c]上______(有/无)零点;f(b)·f(c)_____0(<或>).○3在区间[c,d]上______(有/无)零点;f(c)·f(d)_____0(<或>).由以上两步探索,你
6、可以得出什么样的结论?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.师生双边互动生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.生:分析函数,按提示探索,完成解答,并认真思考.师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.师:引导学生理解函数零点存在定理,分析其中各条件的作用.环节教学内容设置例1.求函数f(x)lnx2x6的零点个数.问题:例1)你可以
7、想到什么方法来判断函数零点个数?题2)判断函数的单调性,由单调性你能得该函研数的单调性具有什么特性?究例2.求函数yx32x2x2,并画出它的大致图象.1.利用函数图象判断下列方程有没有根,有几个根:(1)x23x50;(2)2x(x2)3;尝(3)x24x4;试(4)5x22x3x25.练2.利用函数的图象,指出下列函数零点所在师生互动设计师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用
8、函数单调性判断零点的个数.师:结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点的个数;让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点习的大致区间:(1)f(x)(2)f(x)(3)f(x)(4)f(x)
此文档下载收益归作者所有