欢迎来到天天文库
浏览记录
ID:61483563
大小:530.50 KB
页数:5页
时间:2021-02-04
《期中高一数学试卷.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、长庆高级中学2010—2011学年第一学期高一数学期中试卷试卷说明:1、试卷满分150,答题时间120分钟;2、试卷分Ⅰ,Ⅱ卷。Ⅰ卷为选择题,每小题选出答案后,用2B铅笔在答题卡上将对应答案标号涂黑。Ⅱ卷为非选择题,要求直接答在卷面上;3、考试结束后,只交答题卡和Ⅱ卷。第Ⅰ卷(选择题)一、选择题(本题共12小题,每题5分,共60分).1.已知,,,那么()A.B.C.D.2.方程的解集为,方程的解集为,且, 那么()A.B.C.D.3.下列幂函数中过点,的偶函数是()A.B.C.D.4.若,则
2、()A.2B.3C.4D.55.设,则用表示为()A.B.C.D.6.用二分法研究函数的零点时,第一次经计算,可能其中一个零点 ,第二次应计算 ,以上横线应填内容为()A.B.C.D.7.是定义在[-6,6]上的偶函数,且则下列各式一定成立的是()ABCD8.已知函数的图像是连续不断的,有如下对应值表:那么函数在区间上的零点至少有()A.个B.个C.个D.个9.已知,函数与的图象只能是图中的()ABCD10.设,函数在区间上的最大值与最小值之差为,则等于()A.B.C.D.11.已知实数满足等式
3、,下列五个关系式,①;②;③;④;⑤,其中不可能成立的关系式有()A.个B.个C.个D.个12.已知是定义在R上的奇函数,当时,, 则在时的解析式是()A.B.C.D.第Ⅱ卷(非选择题)二、填空题(本题共4小题,每题5分,共20分)13.函数的定义域为 14.,则__________.15.若集合,,,则实数的取值集合为 16.对于给定的函数,有下列4个命题:①对于任意均有;②;③在上是增函数;④有最小值0.其中正确命题的序号是(请将所有正确命题的序号都填上).三、解
4、答题(本题共6题,共70分)17.(1)计算(2)计算:(3)已知的值(本小题12分)18.已知集合,,求:①A∩B;②A∪B;③CR(A∪B)(本小题10分)19.已知函数,(1)判断函数的奇偶性,并证明;(2)用描点法作出的图象,说出它的图象有怎样的对称性?(3)判断在上的单调性并证明。(本小题12分)20.已知函数,(1)当时,求函数的单调区间;(2)当时,求函数在上的最大值和最小值;(2)求实数的取值范围,使在区间上是单调函数。(本小题12分)21.(),(1)求函数的定义域;(2)确定函数的奇
5、偶性;(3)求使的x的取值范围。(本小题12分)22.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每月115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆。为了便于计算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费后的所得)(1)求函数的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能
6、使一日的净收入最多?(本小题12分)长庆高级中学2010—2011学年第一学期高一数学期中试卷答案一、选择题(本题共12小题,每题5分,共60分)123456789101112二、填空题(本题共4小题,每题5分,共20分)13.14.15.16.②③④三、解答题(本题共6题,共70分)17、(1)解:原式==(2)解:原式==(3)解:得,则18、解:,19、解:(1)偶函数(证略)(2)图略,图象关于轴对称(3)在上的单调递减(证略)20、解:(1)当时,,故当,函数单调递增;当,函数单调递减;(2)
7、当时,,(3)当时,在区间上是单调函数。21、解:(1)定义域为(2),故是奇函数(3)当时,原不等式当时,原不等式当时,的取值范围是当时,的取值范围是22、解:(1)当时,,令当时,令(2)对,当对当综上所述,当每辆车租金在元时,一日的净收入最多为270元。
此文档下载收益归作者所有