欢迎来到天天文库
浏览记录
ID:61289113
大小:679.00 KB
页数:19页
时间:2021-01-24
《有界磁场的临界问题分解教学文案.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、有界磁场的临界问题分解2.如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O方向垂直磁场射入一速度方向跟ad边夹角θ=300、大小为v0的带电粒子,已知粒子质量为m、电量为q,ab边足够长,ad边长为L,粒子的重力不计。求:⑴.粒子能从ab边上射出磁场的v0大小范围。⑵.如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间。V0OabcdV0Oabcdθ300600V0θ2θ2θ3.如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,
2、磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离L=16cm处,有一个点状的放射源S,它向各个方向发射α粒子,α粒子的速度都是v=4.8x106m/s,已知α粒子的电荷与质量之比q/m=5.0x107C/kg现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度.sabL.解:粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有因朝不同方向发射的α粒子的圆轨迹都过S,由此可知,某一圆轨迹在图中ab上侧与ab相切,则此切点P1就是该粒子能打中的上侧最远点.sabP1再考虑ab的下侧.任何α粒
3、子在运动中离S的距离不可能超过2R,以2R为半径、S为圆心作圆,交ab于ab下侧的P2点,此即下侧能打到的最远点.P2NLMN××××××××××××●OP●B变式:如图所示,在半径为的圆形区域内有水平向里的匀强磁场,磁感应强度B,圆形区域右侧有一竖直感光板,从圆弧顶点P以速率V0的带正电粒子平行于纸面进入磁场,已知粒子的质量为m,电量为q,粒子重力不计。⑴若粒子对准圆心射入,求它在磁场中运动的时间;⑵若粒子对准圆心射入,且速率为,求它打到感光板上时速度的垂直分量。⑶若粒子以速度从P点以任意角入射,试证明它离开磁场后均垂直打在感光板
4、上。MN××××××××××××●OP●B练习:如图所示,x轴正方向水平向右,y轴正方向竖直向上。在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在05、并说明理由。(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。方法一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点为。方法二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动。如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为,圆周运动轨迹方程为:得:X=0y=0或(3)这束带电微粒与x轴相交的区域是x>0带电微粒在磁场中经过一段半径为r′的6、圆弧运动后,将在y同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在突出磁场后会射向x同正方向的无穷远处国靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。所以,这束带电微粒与x同相交的区域范围是x>0.练习:如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是( )A.只要对着圆心入射,出射后均可垂直打在MN上B7、.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D.只要速度满足,沿不同方向入射的粒子出射后均可垂直打在MN上。4.在真空中宽d的区域内有匀强磁场B,质量为m,电量为e,速率为v的电子从边界CD外侧垂直射入磁场,入射方向与CD夹角θ,为了使电子能从磁场的另一侧边界EF射出,v应满足的条件是:A.v>eBd/m(1+sinθ)B.v>eBd/m(1+cosθ)C.v>eBd/msinθD.v<eBd/mcosθCEFDBO.θB思考:求电子在磁场中运动的最长时间8、是多长?5.如图,在一水平放置的平板MN上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里,许多质量为m,带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互影响.下列图
5、并说明理由。(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。方法一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点为。方法二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动。如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为,圆周运动轨迹方程为:得:X=0y=0或(3)这束带电微粒与x轴相交的区域是x>0带电微粒在磁场中经过一段半径为r′的
6、圆弧运动后,将在y同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在突出磁场后会射向x同正方向的无穷远处国靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。所以,这束带电微粒与x同相交的区域范围是x>0.练习:如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是( )A.只要对着圆心入射,出射后均可垂直打在MN上B
7、.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D.只要速度满足,沿不同方向入射的粒子出射后均可垂直打在MN上。4.在真空中宽d的区域内有匀强磁场B,质量为m,电量为e,速率为v的电子从边界CD外侧垂直射入磁场,入射方向与CD夹角θ,为了使电子能从磁场的另一侧边界EF射出,v应满足的条件是:A.v>eBd/m(1+sinθ)B.v>eBd/m(1+cosθ)C.v>eBd/msinθD.v<eBd/mcosθCEFDBO.θB思考:求电子在磁场中运动的最长时间
8、是多长?5.如图,在一水平放置的平板MN上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里,许多质量为m,带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互影响.下列图
此文档下载收益归作者所有