资源描述:
《简单的线性规划问题(实际应用)ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3.3简单的线性规划问题—实际应用5x+4y=202x+3y=12线性目标函数Z的最大值为44已知实数x,y满足下列条件:5x+4y≤202x+3y≤12x≥0y≥0求z=9x+10y的最大值.最优解可行域9x+10y=0想一想:线性约束条件.............0123456123456xy代数问题(线性约束条件)图解法转化线性约束条件可行域转化线性目标函数Z=Ax+By一组平行线转化最优解寻找平行线组的纵截距最值四个步骤:1、画4、答3、移2、作三个转化一.复习转化转化转化四个步骤:1。画(画可行域)三个转化4。答(求出点的坐标,并转化为最优解)3。移(平
2、移直线L。寻找使纵截距取得最值时的点)2。作(作z=Ax+By=0时的直线L。)图解法想一想(结论):线性约束条件可行域线性目标函数Z=Ax+By一组平行线最优解寻找平行线组的最大(小)纵截距给定一定量的人力.物力,资金等资源完成的任务量最大经济效益最高给定一项任务所耗的人力.物力资源最小降低成本获取最大的利润精打细算最优方案统筹安排最佳方案实际应用例1某工厂生产甲、乙两种产品,生产1t甲两种产品需要A种原料4t、B种原料12t,产生的利润为2万元;生产乙种产品需要A种原料1t、B种原料9t,产生的利润为1万元。现有库存A种原料10t、B种原料60t,如何安排生产才能
3、使利润最大?分析:在关数据列表如下:A种原料B种原料利润甲种产品4122乙种产品191现有库存1060设生产甲、乙两种产品的吨数分别为x、y利润何时达到最大?xYo4x+y=1012x+9y=602x+y=0例2某工厂生产甲、乙两种产品.已知生产甲种产品1t需消耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1吨需消耗A种矿石4t、B种矿石4t、煤9t.每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、消耗B种矿石不超过200t、消耗煤不超过360t.若你是厂长,你应如何安排甲乙两种产品的
4、产量(精确到0.1t),才能使利润总额达到最大?某工厂生产甲、乙两种产品.已知生产甲种产品1t需消耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1吨需消耗A种矿石4t、B种矿石4t、煤9t.每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、消耗B种矿石不超过200t、消耗煤不超过360t.若你是厂长,你应如何安排甲乙两种产品的产量(精确到0.1t),才能使利润总额达到最大?分析问题:1.本问题给定了哪些原材料(资源)?2.该工厂生产哪些产品?3.各种产品对原材料(资源)有怎样的要求?4.
5、该工厂对原材料(资源)有何限定条件?5.每种产品的利润是多少?利润总额如何计算?原材料每吨产品消耗的原材料A种矿石B种矿石煤甲产品(t)乙产品(t)1054449原材料限额300200360利润6001000xtyt把题中限制条件进行转化:约束条件10x+4y≤3005x+4y≤2004x+9y≤360x≥0y≥0z=600x+1000y.目标函数:设生产甲、乙两种产品.分别为xt、yt,利润总额为z元解:设生产甲、乙两种产品.分别为xt、yt,利润总额为z元,那么10x+4y≤3005x+4y≤2004x+9y≤360x≥0y≥0z=600x+1000y.画出以上不
6、等式组所表示的可行域作出直线L600x+1000y=0.解得交点M的坐标为(12.4,34.4)5x+4y=200{4x+9y=360由10x+4y=3005x+4y=2004x+9y=360600x+1000y=0M答:应生产甲产品约12.4吨,乙产品34.4吨,能使利润总额达到最大。(12.4,34.4)经过可行域上的点M时,目标函数在y轴上截距最大.90300xy10201075405040此时z=600x+1000y取得最大值.例3.gsp图形把直线L向右上方平移实际问题线性规划问题寻找约束条件建立目标函数列表设立变量转化1.约束条件要写全;3.解题格式要规范
7、.2.作图要准确,计算也要准确;注意:结论1:例3.某工厂现有两种大小不同规格的钢板可截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:解:设需截第一种钢板x张,第二种钢板y张,钢板总张数为Z,则规格类型钢板类型第一种钢板第二种钢板A规格B规格C规格2121312x+y≥15,x+2y≥18,x+3y≥27,x≥0y≥0某顾客需要A,B,C三种规格的成品分别为15,18,27块,若你是经理,问各截这两种钢板多少张既能满足顾客要求又使所用钢板张数最少。x张y张分析问题:目标函数:z=x+yx0y2x+y=15x+3y=27x+