欢迎来到天天文库
浏览记录
ID:57796658
大小:4.32 MB
页数:211页
时间:2020-09-02
《北师大版数学九年级上册全部教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北师大版数学九年级上册全部教案1.你能证明它们吗(一)本章总体设计介绍本章是八年级下册第六章《证明(一)》的继续,教科书首先给出四条公理,这四条公理与《证明(一)》中给出的两条公理一起作为这一章继续对命题进行证明的逻辑基础。在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础.本章所证明的命题都和等腰三角形、直角三角形有关,主要包括:1.等腰三角形的性质和判定定理;2.直角三角形的性质定理和判定定理;3.线段的垂
2、直平分线性质和判定定理;4.角平分线性质定理和判定定理。本章教学建议对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。作为初
3、中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。1.你能证明它们吗(一)一、学生知识状况分析在八年级下册第六章《证明(一)》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。二、教学任务分析本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具
4、备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:1.知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证明的基本步骤和书写格式。2.能力目标:经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;鼓励学生在交流探索中发现证明方法的多样
5、性,提高逻辑思维水平;3.情感与价值目标启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;培养学生合作交流的能力,以及独立思考的良好学习习惯.4.教学重、难点重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法;难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。三、教学过程分析学生课前准备:一张等腰三角形纸片(供上课折叠实验用);教师课前准备:制作好的几何画板课件.本节课设计了六个教学环节:第一环节:回顾旧知导出公理;第二环节:折纸活动探索新知;第三环节:明晰结论和证明过程;第四
6、环节:随堂练习巩固新知;第五环节:课堂小结;第六环节:布置作业。第一环节:回顾旧知导出公理活动内容:提请学生回忆并整理《证明(一)》中列出的六条公理:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS);6.全等三角形的对应边相等,对应角相等。在此基础上回忆全等三角形的另一判别条件:(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利
7、用前面所提到的公理进行证明。活动目的:经过一个暑假,学生难免有所遗忘,因此,在第一课时,回顾有关内容,既是对前面学习内容的一个简单梳理,也为后续有关证明做了知识准备;证明这个推论,可以让学生熟悉证明的基本要求和步骤,为后面的其他证明做好准备。活动效果与注意事项:由于有了前面的铺垫,学生一般都能得到该推论的证明思路,但由于有了一个暑假的遗忘,可能部分学生的表述未必严谨、规范,教学中注意提请学生分析条件和结论,画出简图,写出已知和求证,并规范地写出证明过程。具体证明如下:已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A
8、=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内
此文档下载收益归作者所有