信息论与编码曹雪虹课后习题答案.doc

信息论与编码曹雪虹课后习题答案.doc

ID:57674713

大小:259.50 KB

页数:7页

时间:2020-08-31

信息论与编码曹雪虹课后习题答案.doc_第1页
信息论与编码曹雪虹课后习题答案.doc_第2页
信息论与编码曹雪虹课后习题答案.doc_第3页
信息论与编码曹雪虹课后习题答案.doc_第4页
信息论与编码曹雪虹课后习题答案.doc_第5页
资源描述:

《信息论与编码曹雪虹课后习题答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1设二元对称信道的传递矩阵为(1)若P(0)=3/4,P(1)=1/4,求H(X),H(X/Y),H(Y/X)和I(X;Y);(2)求该信道的信道容量及其达到信道容量时的输入概率分布;解:1)2)其最佳输入分布为3.5求下列二个信道的信道容量,并加以比较(1)(2)其中p+=1解:(1)此信道是准对称信道,信道矩阵中Y可划分成三个互不相交的子集由于集列所组成的矩阵,而这两个子矩阵满足对称性,因此可直接利用准对称信道的信道容量公式进行计算。C1=logr-H(p1’p2’p3’)-其中r=2,N1=M1=1-2N2=M2=4所以C1=lo

2、g2-H(,p-ε,2ε)-(1-2)log(1-2)-2log4=log2+()log()+(p-ε)log(p-ε)+2εlog2ε-(1-2ε)log(1-2ε)-2εlog4ε=log2-2εlog2-(1-2ε)log(1-2ε)+()log()+(p-ε)log(p-ε)=(1-2ε)log2/(1-2ε)+()log()+(p-)log(p-)输入等概率分布时达到信道容量。(2)此信道也是准对称信道,也可采用上述两种方法之一来进行计算。先采用准对称信道的信道容量公式进行计算,此信道矩阵中Y可划分成两个互不相交的子集,由子集列所

3、组成的矩阵为,这两矩阵为对称矩阵其中r=2,N1=M1=1-2N2=M2=2,所以C=logr-H(-,p-ε,2ε,0)-=log2+(-)log(-)+(p-ε)log(p-ε)+2εlog2ε-(1-2ε)log(1-2ε)-2εlog2ε=log2-(1-2ε)log(1-2ε)+(-)log(-)+(p-ε)log(p-ε)=(1-2ε)log2/(1-2ε)+2εlog2+(-)log(-)+(p-ε)log(p-ε)=C1+2εlog2输入等概率分布(P(a1)=P(a2)=1/2)时达到此信道容量。比较此两信道容量,可得C2

4、=C1+2εlog23.9在图片传输中,每帧约有2.25Í106个像素,为了能很好地重现图像,能分16个亮度电平,并假设亮度电平等概分布。试计算每分钟传送一帧图片所需信道的带宽(信噪功率比为30dB)。解:4.2某二元信源其失真矩阵为求这信源的Dmax和Dmin和R(D)函数。解:因为二元等概信源率失真函数:其中n=2,所以率失真函数为:4.3一个四元对称信源,接收符号Y={0,1,2,3},其失真矩阵为,求Dmax和Dmin及信源的R(D)函数,并画出其曲线(取4至5个点)。解:因为n元等概信源率失真函数:其中a=1,n=4,所以率失真函

5、数为:5-1将下表所列的某六进制信源进行二进制编码,试问:消息概率u1u2u3u4u5u61/21/41/161/161/161/160000010100111001010010110111011110101101110111100101101110010011111100000101011011001001100101110111(1)这些码中哪些是唯一可译码?(2)哪些码是非延长码?(3)对所有唯一可译码求出其平均码长和编译效率。解:首先,根据克劳夫特不等式,找出非唯一可译码不是唯一可译码,而:又根据码树构造码字的方法,,的码字均处于终

6、端节点他们是即时码5-2(1)因为A,B,C,D四个字母,每个字母用两个码,每个码为0.5ms,所以每个字母用10ms当信源等概率分布时,信源熵为H(X)=log(4)=2平均信息传递速率为bit/ms=200bit/s(2)信源熵为H(X)==0.198bit/ms=198bit/s5-5(1)H(U)=(2)每个信源使用3个二进制符号,出现0的次数为出现1的次数为P(0)=P(1)=(3)(4)相应的香农编码信源符号xi符号概率pi累加概率Pi-Logp(xi)码长Ki码字x11/20110x21/40.52210x31/80.7533

7、110x41/160.875441110x51/320.9385511110x61/640.96966x71/1280.98477x81/1280.99277相应的费诺码信源符号符号概率pi二元码xi第一次分组第二次分组第三次分组第四次分组第五次分组第六次分组第七次分组x11/200x21/41010x31/810110x41/16101110x51/321011110x61/6410x71/12810x81/1281(5)香农码和费诺码相同平均码长为编码效率为:5-11(1)信源熵(2)香农编码:信源符号xi符号概率pi累加概率Pi-Lo

8、gp(xi)码长Ki码字x10.3201.644200x20.220.322.1843010x30.180.542.4743100x40.160.722.6443101x50.0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。