欢迎来到天天文库
浏览记录
ID:57491244
大小:358.50 KB
页数:8页
时间:2020-08-24
《常微分方程论文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.....《关于常微分方程解法的探究》 班级:数学与应用数学131学号:13190122:丁延辉日期:2016年5月25号.....c.....摘要常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具。并且常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中。因此,由实际问题列出微分方程后,其解法非
2、常关键,微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。关键词:微分方程降阶法变量代换法齐次型一阶线性.....c.....1一阶微分方程1.1变量可分离的微分方程形如(1)的方程,称为变量分离方程,,分别是,的连续函数.这是一类最简单的一阶函数.如果,我们可将()改写成这样变量就分离开来了.两边积分,得到为任意常数.由该式所确定的函数关系式就是常微分方程的解.例1:求解的通解。解:→→→通解:1.
3、2齐次型微分方程(变量代换的思想)一阶微分方程可以化成的形式。求解:,(可分离变量)通解例2:解方程.....c.....1.3一阶线性微分方程若称为一阶齐次线性微分方程。若()称为一阶非齐次线性微分方程。一阶非齐次微分方程的通解等于对应的齐次方程的通解与非齐次方程的一个特解之和。解的通解如下:可分离变量的一阶微分方程(齐次方程通解)采用积分因子法求的一个特解如下()的通解为:.....c.....1.4伯努利方程形如:当时,一阶线性微分方程当时,可分离变量微分方程求通解过程:作变量代换2.高阶微分方程
4、的降阶法(以二阶为例)二阶及二阶以上的微分方程称为高阶微分方程,求高阶微分方程通解的方法成为降阶法2.1y(n)=f(x)型:解法:2.2y"=f(x,y')型解法:2.3y"=f(y,y')型解法:.....c.....若得其解为则原方程通解为2.4二阶线性微分方程解的结构形如:若时,(方程一)称为:二阶线性齐次微分方程。若时,(方程二)称为:二阶非齐次微分方程2.4.1二阶线性齐次微分方程解的结构定理1:如果函数与是(方程一)的两个解,则也是(方程一)的解,其中是任意常数.定理2:如果与是(方程一)
5、的两个线性无关的特解,则就是(方程一)的通解,其中是任意常数2.4.2二阶线性非齐次微分方程解的结构定理3设是(方程一)的一个特解,而是其对应的齐次方程的通解,则就是二阶非齐次线性微分方程(方程二)的通解......c.....2.5二阶常系数线性微分方程2.5.1二阶常系数线性齐次微分方程的解法当均为常数,即或其中p,q均为常数。求解:三种情况:1)两个不等实根:2)两个相等实根:3)一对共轭复根:2.5.2二阶常系数线性非齐次微分方程的解法(1)若方程(1)中,其中是的次多项式,则方程(1)的一特解
6、具有如下形式其中是系数待定的的次多项式,由下列情形决定:(1)当是方程(1)对应的齐次方程的特征方程的单根时,取;(2)当是方程(1)对应的齐次方程的特征方程的重根时,取;(3)当不是方程(1)对应的齐次方程的特征根时,取.定理4若方程(1)中的或(是的次多项式),则方程(1)的一个特解具有如下形式.其中、为系数待定的的次多项式,由下列情形决定:.....c.....(1)当是对应齐次方程特征根时,取;(2)当不是对应齐次方程特征根时,取......c
此文档下载收益归作者所有