2018尖子生专训3相交线平行线含问题详解.doc

2018尖子生专训3相交线平行线含问题详解.doc

ID:57062601

大小:212.50 KB

页数:11页

时间:2020-07-31

2018尖子生专训3相交线平行线含问题详解.doc_第1页
2018尖子生专训3相交线平行线含问题详解.doc_第2页
2018尖子生专训3相交线平行线含问题详解.doc_第3页
2018尖子生专训3相交线平行线含问题详解.doc_第4页
2018尖子生专训3相交线平行线含问题详解.doc_第5页
资源描述:

《2018尖子生专训3相交线平行线含问题详解.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、尖子生专训3相交线平行线答案1.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足

2、a﹣3b

3、+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,

4、两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值围.解:(1)∵a、b满足

5、a﹣3b

6、+(a+b﹣4)2=0,∴a﹣3b=0,且a+b﹣4=0,∴a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(20+t)×1,解得t=10;②当60<t<120时,3t﹣3×60+(20+t)×1=180°,解得t=85;③当120<t<160时,3t﹣360=t+20,解得t

7、=190>160,(不合题意)综上所述,当t=10秒或85秒时,两灯的光束互相平行;(3)设A灯转动时间为t秒,∵∠CAN=180°﹣3t,∴∠BAC=45°﹣(180°﹣3t)=3t﹣135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°﹣3t=180°﹣2t,而∠ACD=90°,∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t)=2t﹣90°,∴∠BAC:∠BCD=3:2,即2∠BAC=3∠BCD.2.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为G.(1)求

8、证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.解:(1)如图1,∵MN∥PQ,∴∠MAG=∠BDG,∵∠AGB是△BDG的外角,BG⊥AD,∴∠AGB=∠BDG+∠PBG=90°,∴∠MAG+∠PBG=90°;(2)2∠AHB﹣∠CBG=90°或2∠AHB+∠CBG=90°,证明:

9、①如图,当点C在AG上时,∵MN∥PQ,∴∠MAC=∠BDC,∵∠ACB是△BCD的外角,∴∠ACB=∠BDC+∠DBC=∠MAC+∠DBC,∵AH平分∠MAC,BH平分∠DBC,∴∠MAC=2∠MAH,∠DBC=2∠DBH,∴∠ACB=2(∠MAH+∠DBH),同理可得,∠AHB=∠MAH+∠DBH,∴∠ACB=2(∠MAH+∠DBH)=2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=∠CBG+90°,∴2∠AHB=∠CBG+90°,即2∠AHB﹣∠CBG=90°;②如图,当点C在DG上时,同理可得,∠ACB=2∠AHB,又∵Rt△

10、BCG中,∠ACB=90°﹣∠CBG,∴2∠AHB=90°﹣∠CBG,即2∠AHB+∠CBG=90°;(3)(2)中的结论不成立.存在:2∠AHB+∠CBG=270°;2∠AHB﹣∠CBG=270°.①如图,当点C在AG上时,由MN∥PQ,可得:∠ACB=360°﹣∠MAC﹣∠PBC=360°﹣2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°﹣2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=90°+∠CBG,∴360°﹣2∠AHB=90°+∠CBG,即2∠AHB+∠CBG=270°;②如图,当C在DG上时,

11、同理可得,∠ACB=360°﹣2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°﹣2∠AHB,又∵Rt△BCG中,∠ACB=90°﹣∠CBG,∴360°﹣2∠AHB=90°﹣∠CBG,∴2∠AHB﹣∠CBG=270°.3.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即P

12、Q∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= 60 °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯互相平行?(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。