Putting Context into Vision把语境分为视觉课件.ppt

Putting Context into Vision把语境分为视觉课件.ppt

ID:57044212

大小:1.84 MB

页数:48页

时间:2020-07-28

Putting Context into Vision把语境分为视觉课件.ppt_第1页
Putting Context into Vision把语境分为视觉课件.ppt_第2页
Putting Context into Vision把语境分为视觉课件.ppt_第3页
Putting Context into Vision把语境分为视觉课件.ppt_第4页
Putting Context into Vision把语境分为视觉课件.ppt_第5页
资源描述:

《Putting Context into Vision把语境分为视觉课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、PuttingContextintoVisionDerekHoiemSeptember15,2019QuestionstoAnswerWhatiscontext?Howiscontextusedinhumanvision?Howiscontextcurrentlyusedincomputervision?ConclusionsWhatiscontext?Anydataormeta-datanotdirectlyproducedbythepresenceofanobjectNearbyimagedataContextWha

2、tiscontext?Anydataormeta-datanotdirectlyproducedbythepresenceofanobjectNearbyimagedataSceneinformationContextContextWhatiscontext?Anydataormeta-datanotdirectlyproducedbythepresenceofanobjectNearbyimagedataSceneinformationPresence,locationsofotherobjectsTreeHowdow

3、eusecontext?AttentionArethereanylivefishinthispicture?CluesforFunctionWhatisthis?CluesforFunctionWhatisthis?Nowcanyoutell?Low-ResScenesWhatisthis?Low-ResScenesWhatisthis?Nowcanyoutell?MoreLow-ResWhataretheseblobs?MoreLow-ResThesamepixels!(acar)Whyiscontextuseful?

4、ObjectsdefinedatleastpartiallybyfunctionTreesgrowingroundBirdscanfly(usually)DoorknobshelpopendoorsWhyiscontextuseful?ObjectsdefinedatleastpartiallybyfunctionContextgivescluesaboutfunctionNotrootedintothegroundnottreeObjectinsky{cloud,bird,UFO,plane,superman}Do

5、orknobsalwaysondoorsWhyiscontextuseful?ObjectsdefinedatleastpartiallybyfunctionContextgivescluesaboutfunctionObjectslikesomescenesbetterthanothersToiletslikebathroomsFishlikewaterWhyiscontextuseful?ObjectsdefinedatleastpartiallybyfunctionContextgivescluesaboutfun

6、ctionObjectslikesomescenesbetterthanothersManyobjectsareusedtogetherand,thus,oftenappeartogetherKettleandstoveKeyboardandmonitorHowiscontextusedincomputervision?Neighbor-basedContextMarkovRandomField(MRF)incorporatescontextualconstraintssites(ornodes)neighborsBlo

7、bsandWords–Carbonetto2019Neighbor-basedcontext(MRF)usefulevenwhentrainingdataisnotfullysupervisedLearnsmodelsofobjectsgivencaptionedimages…DiscriminativeRandomFields–Kumar2019Usingdatasurroundingthelabelsite(notjustatthelabelsite)improvesresultsBuildingsvs.Non-Bu

8、ildingsMulti-scaleConditionalRandomField(mCRF)–He2019Independentdata-basedlabelsRawimageLocalcontextScenecontextmCRFFinaldecisionbasedonClassification(localdat

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。