资源描述:
《离散型随机变量的均值与方差(二)课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、离散型随机变量的均值与方差(二)数学期望的定义:一般地,随机变量的概率分布列为则称为的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平.结论1:则;3.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球1次的得分ξ的期望为.1.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取2个,则其中含红球个数的数学期望是.1.22.若E(ξ)=4.5,则E(-ξ)=.0.7(详细解答过程见课本例1)-4.5这是一个特殊的二项分布的随机变量的期望,那么一般地,若ξ~B(n,p),则Eξ=?∴Eξ=0×Cn0p0qn+1×Cn1p1
2、qn-1+2×Cn2p2qn-2+…+k×Cnkpkqn-k+…+n×Cnnpnq0∵P(ξ=k)=Cnkpkqn-k证明:=np(Cn-10p0qn-1+Cn-11p1qn-2+…+Cn-1k-1pk-1q(n-1)-(k-1)+…+Cn-1n-1pn-1q0)=np(p+q)n-1=npξ01…k…nPCn0p0qnCn1p1qn-1…Cnkpkqn-k…Cnnpnq0(∵kCnk=nCn-1k-1)结论2:若ξ~B(n,p),则Eξ=np期望在生活中的应用广泛,见课本第63页例2.例3思考1.某商场的促销决策:统计资料表明,每年端午节商场内促销活动可获利2万元;商场外促销活动如
3、不遇下雨可获利10万元;如遇下雨可则损失4万元。6月19日气象预报端午节下雨的概率为40%,商场应选择哪种促销方式?解:因为商场内的促销活动可获效益2万元设商场外的促销活动可获效益万元,则的分布列P10-40.60.4所以E=10×0.6+(-4)×0.4=4.4因为4.4>2,所以商场应选择在商场外进行促销.思考2.有场赌博,规则如下:如掷一个骰子,出现1,你赢8元;出现2或3或4,你输3元;出现5或6,不输不赢.这场赌博对你是否有利?对你不利!劝君莫参加赌博.数学期望的定义:一般地,随机变量的概率分布列为则称为的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均
4、水平.结论1:则;结论2:若ξ~B(n,p),则Eξ=np期望在生活中的应用广泛,见课本第63页例2.例3不一定,其含义是在多次类似的测试中,他的平均成绩大约是90分思考1例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项正确,每题选对得5分,不选或选错不得分,满分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选项中随机地选择一个.求学生甲和学生乙在这次测验中的成绩的均值.解:设学生甲和学生乙在这次测验中选择正确的选择题个数分别是ξ和η,则ξ~B(20,0.9),η~B(20,0.25),所以Eξ=20×0.9=18,Eη=20
5、×0.25=5.由于答对每题得5分,学生甲和学生乙在这次测验中的成绩分别是5ξ和5η.这样,他们在测验中的成绩的期望分别是E(5ξ)=5Eξ=5×18=90,E(5η)=5Eη=5×5=25.思考:学生甲在这次测试中的成绩一定会是90分吗?他的均值为90分的含义是什么?思考1.某商场的促销决策:统计资料表明,每年端午节商场内促销活动可获利2万元;商场外促销活动如不遇下雨可获利10万元;如遇下雨可则损失4万元。6月19日气象预报端午节下雨的概率为40%,商场应选择哪种促销方式?解:因为商场内的促销活动可获效益2万元设商场外的促销活动可获效益万元,则的分布列P10-40.60.4所
6、以E=10×0.6+(-4)×0.4=4.4因为4.4>2,所以商场应选择在商场外进行促销.彩球游戏准备一个布袋,内装6个红球与6个白球,除颜色不同外,六个球完全一样,每次从袋中摸6个球,输赢的规则为:6个全红赢得100元5红1白赢得50元4红2白赢得20元3红3白输100元2红4白赢得20元1红5白赢得50元6个全白赢得100元你动心了吗?思考2:如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?已知甲、乙两名射手在同一条件下射击,所得环数x1、x2的分布列如下:试比较两名射手的射击水平.x18910P0.20.60.2x28910P0.40.20.4如果其他对手的射击成绩
7、都在9环左右,应派哪一名选手参赛?显然两名选手的水平是不同的,这里要进一步去分析他们的成绩的稳定性.方差定义一组数据的方差:方差反映了这组数据的波动情况在一组数:x1,x2,…,xn中,各数据的平均数为,则这组数据的方差为:类似于这个概念,我们可以定义随机变量的方差..离散型随机变量取值的方差和标准差:则称为随机变量x的方差.一般地,若离散型随机变量x的概率分布列为:············称为随机变量x的标准差.它们都是反映离散型随机变量偏离于均值的平均