欢迎来到天天文库
浏览记录
ID:56677152
大小:508.50 KB
页数:19页
时间:2020-07-04
《高中数学 第1章 导数及其应用章末分层突破学案 新人教B版选修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、章末分层突破[自我校对]①导数及其应用②导数的运算③曲线的切线斜率④导数的四则运算⑤函数的单调性⑥曲线的切线⑦最优化问题⑧曲边梯形的面积⑨微积分基本定理的应用导数的几何意义及其应用利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点,常见的类型有两种,一是求“在某点处的切线方程”,则此点一定为切点,先求导,再求斜率代入直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),则切线方程为y-y1=f′(x1)(x-x1),再由切线过点P(x0,y0)得y0-y1=f′(x1)(x0-
2、x1),①又y1=f(x1),②由①②求出x1,y1的值,即求出了过点P(x0,y0)的切线方程.(1)曲线y=xex-1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.1(2)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图11所示,则该函数的图象是()【导学号:】图11【精彩点拨】(1)曲线在点(1,1)处的切线斜率即为该点处的导数.(2)由导数值的大小变化,确定原函数的变化情况,从而得出结论.【规范解答】(1)y′=ex-1+xex-1=(x+1)ex-1,故曲线在点(1,1)处的切线斜率
3、为k=2.(2)从导函数的图象可以看出,导函数值先增大后减小,x=0时最大,所以函数f(x)的图象的变化率也先增大后减小,在x=0时变化率最大.A项,在x=0时变化率最小,故错误;C项,变化率是越来越大的,故错误;D项,变化率是越来越小的,故错误;B项正确.【答案】(1)C(2)B[再练一题]1.已知曲线y=x3+.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.【解】(1)∵P(2,4)在曲线y=x3+上,且y′=x2,∴在点P(2,4)处的切线的斜率k=4.∴曲线在
4、点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=x3+与过点P(2,4)的切线相切于点A,则切线的斜率k=x.∴切线方程为y-=x(x-x0),即y=x·x-x+.∵点P(2,4)在切线上,∴4=2x-x+,即x-3x+4=0,∴x+x-4x+4=0.∴x(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1或x0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.(3)设切点为(x0,y0),则切线的斜率k=x=4,∴x0=±2.∴切点为(2,4)或.
5、∴斜率为4的曲线的切线方程为y-4=4(x-2)和y+=4(x+2),即4x-y-4=0和12x-3y+20=0.利用导数判断函数的单调性利用导数的符号判断函数的增减性,进而确定函数的单调区间,这是导数的几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合思想.这部分内容要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′(x)≤0且f′(x)=0的根有有限个.(2016·北京高考)设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
6、(1)求a,b的值;(2)求f(x)的单调区间.【精彩点拨】(1)利用导数的几何意义和求导运算建立方程组求未知数.(2)利用导数与函数单调性的关系判断函数的单调性.【规范解答】(1)因为f(x)=xea-x+bx,所以f′(x)=(1-x)ea-x+b.依题设,即解得(2)由(1)知f(x)=xe2-x+ex.由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,f′(x)与1-x+ex-1同号.令g(x)=1-x+ex-1,则g′(x)=-1+ex-1.所以,当x∈(-∞,1)时,g′(x)<0,g(x)在区间(-∞,1)上单调
7、递减;当x∈(1,+∞)时,g′(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知,f′(x)>0,x∈(-∞,+∞),故f(x)的单调递增区间为(-∞,+∞).[再练一题]2.(2016·全国卷Ⅱ)(1)讨论函数f(x)=ex的单调性,并证明当x>0时,(x-2)ex+x+2>0;(2)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.【解】(1)f(x)的定义域为(-∞,
8、-2)∪(-2,+∞).f′(x)==≥0,当且仅当x=0时,f′(x)=0,所以f(x)在(-∞,-2),(-2,+∞)上单调递增.因此当x∈(0,+∞)时,f(x)>f(0)=-1.所以(x-2)ex>
此文档下载收益归作者所有