欢迎来到天天文库
浏览记录
ID:56048134
大小:63.50 KB
页数:4页
时间:2020-06-19
《初高中衔接十字相乘法分解因式.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、因式分解的一点补充——十字相乘法同学们都知道,型的二次三项式是分解因式中的常见题型,那么此类多项式该如何分解呢?观察=,可知=。这就是说,对于二次三项式,如果常数项b可以分解为p、q的积,并且有p+q=a,那么=。这就是分解因式的十字相乘法。下面举例具体说明怎样进行分解因式。例1、 因式分解。分析:因为 7x + (-8x)=-x解:原式=(x+7)(x-8)例2、 因式分解。分析:因为 -2x+(-8x)=-10x解:原式=(x-2)(x-8)从上面几个例子可以看出十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握
2、。但要注意,并不是所有的二次三项式都能进行因式分解,如在实数范围内就不能再进一步因式分解了课前练习:下列各式因式分解1.-x2+2x+152.(x+y)2-8(x+y)+483.x4-7x2+184.x2-5xy+6y2我们已经学习了把形如x2+px+q的某些二次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。例3把2x2-7x+3因式分解。分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写
3、在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。4用画十字交叉线方法表示下列四种情况:11131-11-32×32×12×-32×-11×3+2×11×1+2×31×(-3)+2×(-1)1×(-1)+2×(-3)=5=7=-5=-7经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。解2x2-7x+3=(x-3)(2x-1)。一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数
4、之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下:a1c1a2×c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2)。像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。例4把6x2-7x-5分解因式。分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同
5、的排列方法,其中的一种213×-52×(-5)+3×1=-7是正确的,因此原多项式可以用直字相乘法分解因式。解6x2-7x-5=(2x+1)(3x-5)。指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是1-31×51×5+1×(-3)=2所以x2+2x-15=(x-3)(x+5)。例5把5x2+6xy-8y2分解因式。分析:这个多项式可以看作是关于x的二
6、次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即125×-41×(-4)+5×2=6解5x2+6xy-8y2=(x+2y)(5x-4y)。指出:原式分解为两个关于x,y的一次式。三、课堂练习1.用十字相乘法因式分解:(1)2x2-5x-12;(2)3x2-5x-2;(3)6x2-13x+5;4(4)7x2-19x-6;(5)12x2-13x+3;(6)4x2+24x+27。2.把下列各式因式分解:(1)6x2-13x+6y2;(2)8x2y2+6xy-35;(3)18x2-21xy+5y2;(4)2(a+b)
7、2+(a+b)(a-b)-6(a-b)2。四、小结1.用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式时,应注意以下问题:(1)正确的十字相乘必须满足以下条件:a1c1在式子中,竖向的两个数必须满足关系a1a2=a,c1c2=c;在上式中,斜a2c2向的两个数必须满足关系a1c2+a2c1=b,分解思路为“看两端,凑中间。”(2)由十字相乘的图中的四个数写出分解后的两个一次因式时,图的上一行两个数中,a1是第一个因式中的一次项系数,c
此文档下载收益归作者所有