水的结晶(通用).doc

水的结晶(通用).doc

ID:55546042

大小:66.00 KB

页数:7页

时间:2020-05-16

水的结晶(通用).doc_第1页
水的结晶(通用).doc_第2页
水的结晶(通用).doc_第3页
水的结晶(通用).doc_第4页
水的结晶(通用).doc_第5页
资源描述:

《水的结晶(通用).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、水的结晶水是地球上的重要物质,对于生命来说尤其重要。水有很多特殊的性质,例如水结成冰后体积不但不减小反而增大,水在4°C时密度最大,水的比热和汽化热等都比一般物质大,等等。这些现象都与水分子间的相互作用,即成键情况有密切的关系,下面就此问题作些浅显的讨论。图4-库-8 冰—Ih的结构示意水分子是极性分子,两个H—O键成104.5°角。水分子间的相互作用力是范德瓦耳斯力,但相互作用方式有其特殊性。当它结成晶体(即冰)时,一个水分子的氢原子与另一个水分子的氧原子相互吸引,组成一种特殊的晶体结构,如图4-库-8所示。图中大圆圈表示氧原子,小圆圈表示氢原子,在

2、这里,每一个氢原子一端与氧原子组成共价键(用短实线表示),而另一端则与另一个水分子中的氧原子靠范德瓦耳斯力连接,它们之间的键合方式称为“氢键”,在图中用虚线表示。由于氢键本质上仍是范德瓦耳斯力,它的强度远比另一端的共价键要弱得多,因此氢原子并不处于两个氧原子的正中,而是靠氢键连接的两个原子距离较远,在图中虚线画得都比实线长,就是表示这个信息。冰的晶体属六角晶系,它是一种比较特殊的晶体结构,每一个水分子都与另外三个水分子相连接(每一个水分子的两个氢原子分别与另两个水分子的氧原子连接,而它的氧原子则与第三个水分子的某一个氢原子连接),由于氢键的特殊方向性,

3、使得冰的晶体结构内部很“空旷”,远不如金属晶体那样密集,因此在水结成冰的过程中,体积不是像大多数物质那样缩小,反而要胀大,即冰的密度比液态水的密度要小。当冰在0°C时吸热熔化成水后,水中的氢键结构只有约15%断裂,其余85%仍然保留。但这15%的氢键解体,就使得体积明显缩小(约缩小1/10)。当水的温度逐渐升高时,水中的氢键结构逐渐解体,到20°C时水中的氢键约还有一半,到了100°C沸点时,水中仍有约20%的氢键结构存在。随着温度的逐渐升高,一方面是氢键结构的解体,它造成水的体积缩小,而另一方面热膨胀现象又造成水的体积胀大,这两种因素都在起作用。从0

4、°C开始升温的初始阶段,氢键的解体起主要作用,因此水的体积随温度的升高而减小,在4°C时体积变得最小而密度最大,4°C以后,温度再升高,起主要作用的就是热膨胀了,因此从4°C以后,水也像大多数物质一样热胀冷缩。氢键虽然本质上是范德瓦耳斯力,但比一般的范德瓦耳斯键要强一些。冰在升华直接变成水蒸气的过程中,要吸收热量,称为升华热,吸收的热量中的大部分是使氢键解体,小部分则是克服一般范德瓦耳斯键的作用,前者约占3/4,后者只占1/4。具体地说,在0°C时冰的升华热约是51.0kJ/mol,其中瓦解氢键需要37.6kJ/mol,其余13.4kJ/mol则是克服

5、一般范德瓦耳斯键所需的能量。正因为水在温度升高的过程中,氢键要逐渐解体,而瓦解氢键需要较大的能量,因此水的比热比一般物质都大。水的汽化热和升华热也比一般物质要大,其原因也是因为需要克服氢键的作用。氢键在生命过程中起着重要作用,具体地体现在液态水身上。水是生命的重要源泉,前面说到的水的几个特性,对于生命都极为重要。水有较大的比热和汽化热,使得水成为地球上的热量调节库。我们地球的日夜温度变化和季节温度变化都是较小的,这对于生命的生长发育极为有利;水在4°C时密度最大,在4°C以下继续冷却以至结冰的过程中,体积要膨胀,对流现象停止,这使得江河湖海在冬天结冰时

6、,从上表面开始结冰,而底层的水则仍然保持4°C的温度不变,这样水中的动、植物都不会被冻死。水的这一切特性,都与氢键有关,这正是我们说氢键在生命过程中起着重要作用的原因。一般说来,任何一种物质,在温度、压强等发生变化时,都会呈现不同的物态,研究物态变化对于深入了解物质的结构及性质,对于研制新材料及新物质,都具有很大的现实意义。熔化和凝固物质由固相转变为液相,叫做熔化;由液相转变为固相,叫做凝固。在一定的压强下,晶体要升高到一定温度才发生熔化,这个温度叫做熔点,其相反过程即由液相转变为固相的温度叫做凝固点。在熔化或凝固过程中,虽然温度保持不变,但要吸收或放

7、出相变潜热。单位质量某种物质熔化成同温度液体时吸收的热量,叫做熔化热;相反过程放出的热量,叫做凝固热;熔化热等于凝固热。在熔化和凝固的过程中既有固相,也有液相,加热则向液相转变,放热则向固相转变。因此,熔点(凝固点)就是在一定压强下固液两相平衡共存的温度。晶体具有一定熔点,决定于晶体具有远程有序的点阵结构,破坏这种结构所需的能量是一定的。当温度升到一定数值,平均热运动能达到晶体的结合能时,一处的结构能够被解离(熔化),另一处在同一温度下同样能够被解离,这个温度就是熔点。非晶体不具有远程有序的特点,只具有近程有序的微观结构,破坏不同的微观结构需要不同的能

8、量,因而表现为随温度升高而逐渐软化和熔化。熔化时所需的熔化热主要用于破坏晶体的点阵结构,因此熔

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。