欢迎来到天天文库
浏览记录
ID:55286664
大小:423.01 KB
页数:6页
时间:2020-05-09
《圆锥曲线与平面向量综合.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、圆锥曲线与平面向量的综合(1)解析几何是研究方程与曲线的一门学科,是用代数的方法研究曲线的性质,而平面向量既具有代数形式又具有几何形式,因此平面向量与解析几何的结合是顺理成章的事情,在解决解析几何问题时,平面向量的出现不仅可以很明确地反映几何特征,而且又方便计算,把解析几何与平面向量综合在一起命制考题,可以有效地考查考生的数形结合思想,解析几何的基本思想以及数学联结能力等数学思想和数学能力。在2004年的试卷中,向量与解析几何综合的解答题有:全国卷Ⅰ(文,理),全国卷Ⅱ(理),天津卷(文,理),湖南卷(文,理),江苏卷,辽宁卷等.在2005年的试卷中,向量与解析几何综合的
2、解答题有:全国卷Ⅰ(文,理),全国卷Ⅱ(文,理),天津卷(文,理),福建卷(文,理),重庆卷(文,理),湖南卷(文,理),辽宁卷等.这表明在全国2004年的25套试卷中有9套占,在2005年的29套试卷中,就有13套,占.(一)解析几何与向量综合的题目,可能出现的向量内容:1.给出直线的方向向量或,等于已知直线的斜率或;2.给出与相交,等于已知过的中点;3.给出,等于已知是的中点;4.给出,等于已知与的中点三点共线;5.给出以下情形之一①,②存在实数③若存在实数,等于已知三点共线.6.给出,等于已知是的定比分点,为定比,即7.给出,等于已知,即是直角,给出,等于已知是钝角
3、,给出,等于已知是锐角,8.给出,等于已知是的平分线/9.在平行四边形中,给出,等于已知是菱形;10.在平行四边形中,给出,等于已知是矩形;11.在中,给出,等于已知是的外心;12.在中,给出,等于已知是的重心;13.在中,给出,等于已知是的垂心;14.在中,给出等于已知通过的内心;15.在中,给出等于已知是的内心;16.在中,给出,等于已知是中边的中线;17.给出,等于已知的面积(三)综合题举例【例1】(2005年·辽宁卷21)已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足(
4、Ⅰ)设为点P的横坐标,证明;(Ⅱ)求点T的轨迹C的方程;(Ⅲ)试问:在点T的轨迹C上,是否存在点M使△F1MF2的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.解:(Ⅰ)证法一:设点P的坐标为由P在椭圆上,得由,所以证法二:设点P的坐标为记则由证法三:设点P的坐标为椭圆的左准线方程为由椭圆第二定义得,即由,所以(Ⅱ)解法一:设点T的坐标为当时,点(,0)和点(-,0)在轨迹上.当时,由,得.又,所以T为线段F2Q的中点.在△QF1F2中,,所以有综上所述,点T的轨迹C的方程是解法二:设点T的坐标为当时,点(,0)和点(-,0)在轨迹上.当时,由,得.又,所
5、以T为线段F2Q的中点.设点Q的坐标为(),则因此①由得②将①代入②,可得综上所述,点T的轨迹C的方程是③④(Ⅲ)解法一:C上存在点M()使S=的充要条件是由③得,由④得所以,当时,存在点M,使S=;当时,不存在满足条件的点M.当时,,由,,,得解法二:C上存在点M()使S=的充要条件是③④由④得上式代入③得于是,当时,存在点M,使S=;当时,不存在满足条件的点M.当时,记,由知,则【例2】(2005年·重庆卷·理21)已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.(Ⅰ)求双曲线C2的方程;(Ⅱ)若直线与椭圆
6、C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围.解:(Ⅰ)设双曲线C2的方程为,则故C2的方程为(Ⅱ)将代入得由直线l与椭圆C1恒有两个不同的交点得即①.由直线l与双曲线C2恒有两个不同的交点A,B得解此不等式得③由①、②、③得故k的取值范围为【例3】(2005年·全国卷Ⅰ·理21文22)已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线.(I)求椭圆的离心率;(II)设M为椭圆上任意一点,且,证明为定值.解:(I)设椭圆方程为则直线AB的方程为化简得.令则共线,得(II)
7、证明:由(I)知,所以椭圆可化为.在椭圆上,即①由(I)知又又,代入①得故为定值,定值为1.
此文档下载收益归作者所有