选修1-1双曲线单元测试题

选修1-1双曲线单元测试题

ID:5521119

大小:1.14 MB

页数:13页

时间:2017-12-16

选修1-1双曲线单元测试题_第1页
选修1-1双曲线单元测试题_第2页
选修1-1双曲线单元测试题_第3页
选修1-1双曲线单元测试题_第4页
选修1-1双曲线单元测试题_第5页
资源描述:

《选修1-1双曲线单元测试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、双曲线单元测试题一、选择题(本大题共12小题,每小题5分)1.双曲线的焦距为()A.3B.4C.3D.42.“双曲线的方程为”是“双曲线的准线方程为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.已知双曲线的一个顶点到它的一条渐近线的距离为,则()A.1B.2C.3D.44.双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()A.B.C.D.5.与曲线共焦点,而与曲线共渐近线的双曲线方程为()A.B.C.D.6.已知双曲线(a>0,b>0

2、)的一条渐近线为y=kx(k>0),离心率e=,则双曲线方程()A.-=1B.C.D.7.如果双曲线上一点P到双曲线右焦点的距离是2,那么点P到y轴的距离是()A.B.C.D.8.双曲线的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是()A.B.C.D.9.已知双曲线的左右焦点分别为,为的右支上一点,且,则的面积等于()A.  B.  C.  D.10.连接双曲线与的四个顶点构成的四边形的面积为S1,连接它们的的四个焦点构成的四边形的面积为S2,则S1:S2的最大值是()A.2B.1C.D.11.设椭圆C

3、1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为()A.B.C.D.12.为双曲线的右支上一点,,分别是圆和上的点,则的最大值为(  )A.B.C.D.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.若曲线表示双曲线,则的取值范围是14.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.15.过双曲线的右顶点为A,右焦点为F。过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为___

4、____。16.方程所表示的曲线为C,有下列命题:①若曲线C为椭圆,则;②若曲线C为双曲线,则或;③曲线C不可能为圆;④若曲线C表示焦点在上的双曲线,则。以上命题正确的是。(填上所有正确命题的序号)三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(12分)已知双曲线经过点M(),且以直线x=1为右准线.(1)如果F(3,0)为此双曲线的右焦点,求双曲线方程;(2)如果离心率e=2,求双曲线方程.(12分)18.(12分)设双曲线的方程为,A、B为其左、右两个顶点,P是双曲线上的任一点,引,AQ与

5、BQ相交于点Q。(1)求Q点的轨迹方程;(2)设(1)中所求轨迹为,、的离心率分别为、,当时,求的取值范围。19.(12分)如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,,曲线是满足为定值的动点的轨迹,且曲线过点.(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;(Ⅱ)设过点的直线与曲线相交于不同的两点、.若△的面积等于,求直线的方程。.20(12分)双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设被双曲线所截得的线段的长为4,求双

6、曲线的方程.OFxyPM第21题图H21.(12分)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,。(Ⅰ)写出双曲线C的离心率与的关系式;(Ⅱ)当时,经过焦点F且平行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。22.(14分)已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是.(I)证明为常数;(II)若动点满足(其中为坐标原点),求点的轨迹方程.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中

7、,只有一项是符合题目要求的)1.D解:由双曲线方程得,于是,故选D。2.A解:“双曲线的方程为”“双曲线的准线方程为”但是“准线方程为”“双曲线的方程”,反例:。故选A。3.D解:取顶点,一条渐近线为故选D。4.B解:如图在中,,,故选B。5.A解:由双曲线与曲线共焦点知焦点在轴上,可排除B、D,与曲线共渐近线可排除C,故选A。6.C解:,所以,故选C。7.A解:由点到双曲线右焦点的距离是2知在双曲线右支上.又由双曲线的第二定义知点到双曲线右准线的距离是,双曲线的右准线方程是,故点到轴的距离是.选A.8.(理)B 解:或(舍去),

8、故选B.(文)C 解:而双曲线的离心率故选C.9.C  解法一:∵双曲线中∴∵∴作边上的高,则∴∴的面积为故选C。解法二:∵双曲线中∴设,则由得又∵为的右支上一点∴∴∴即解得或(舍去)∴∴的面积为故选C。10.C ,∴,故选C。11.A 解:对于椭

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。