欢迎来到天天文库
浏览记录
ID:55039921
大小:693.72 KB
页数:22页
时间:2020-04-26
《空间中的平行与垂直专题复习.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、空间中的平行与垂直专题复习热点一 空间线面位置关系的判定空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1 (1)(·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)关
2、于空间两条直线a、b和平面α,下列命题正确的是( )A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a∥α,b∥α,则a∥bD.若a⊥α,b⊥α,则a∥b答案 (1)D (2)D解析 (1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.(2)线面平行的判定定理中的条件要求a⊄α,故A错;对于线面平行,这条直线与面内的直线的位置关系可以平行,也可以异面,故B错;平行于同一个平面的两条直线的位置关系:平行、相交、异面都有可能,故
3、C错;垂直于同一个平面的两条直线是平行的,故D正确,故选D.思维升华 解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.跟踪演练1 设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m∥α,m⊥β,则α⊥β.
4、其中真命题的个数为( )A.1B.2C.3D.4答案 B解析 ①因为“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面”,所以①正确;②当m平行于两个相交平面α,β的交线l时,也有m∥α,m∥β,所以②错误;③若m∥n,m∥β,则n∥β或n⊂β,所以③错误;④平面α,β与直线m的关系如图所示,必有α⊥β,故④正确.热点二 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2 (·广东)如图,三角形PDC所在的平面与长
5、方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.(1)证明 因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.(2)证明 因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂平面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD.(3)解 如图,取CD的中点E,连接AE和PE.因为PD
6、=PC,所以PE⊥CD,在Rt△PED中,PE===.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h,因为V三棱锥C—PDA=V三棱锥P—ACD,所以S△PDA·h=S△ACD·PE,即h===,所以点C到平面PDA的距离是.思维升华 垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:
7、一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.跟踪演练2 如图,在四棱锥P—ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,点E在棱PD上,且PE=2ED.(1)求证:平面PCD⊥平面PBC;(2)求证:
8、PB∥平面AEC.证明 (1)因为AD⊥CD,AD∥BC,所以CD⊥BC,又PB⊥CD,PB∩BC=B,PB⊂平面PBC,BC⊂平面PBC,所以CD⊥平面PBC,又CD⊂平面PCD,所以平面PCD⊥平面PBC.(2)连接BD交AC于点O,连接OE.因为AD∥BC,所以△ADO∽△CBO,所以DO∶OB=AD∶BC=1∶2,又PE=2ED,所以O
此文档下载收益归作者所有