八年级上册 11.1.1 三角形的边.doc

八年级上册 11.1.1 三角形的边.doc

ID:53283183

大小:364.50 KB

页数:2页

时间:2020-04-02

八年级上册 11.1.1 三角形的边.doc_第1页
八年级上册 11.1.1 三角形的边.doc_第2页
资源描述:

《八年级上册 11.1.1 三角形的边.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、11.1.1三角形的边教学目标1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.重点难点1、三角形的有关概念和符号表示,三角形三边间的不等关系是重点;2、用三角形三边不等关系判定三条线段可否组成三角形是难点。[教学过程]一、情景导入三角形是一种最常见的几何图形,[课件]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。abc那么什么叫做三角形呢?二、三角形及有关概念不在一条直线

2、上的三条线段首尾顺次相接组成的图形叫做三角形。注意:三条线段必须①不在一条直线上,②首尾顺次相接。组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。三角形ABC用符号表示为△ABC。三角形ABC的顶点C所对的边AB可用c表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.三、三角形三边的不等关系探究:[投影7]任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路

3、线:(1)从B→C,(2)从B→A→C;不一样,AB+AC>BC①;因为两点之间线段最短。同样地有AC+BC>AB②AB+BC>AC③由式子①②③我们可以知道什么?三角形的任意两边之和大于第三边.四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。按角分类:三角形直角三角形斜三角形锐角三角形钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。三边都相等的三角形叫做等边三角形;有两条边相等的三角形叫做等腰三角形;三边

4、都不相等的三角形叫做不等边三角形。腰腰底边顶角底角底角显然,等边三角形是特殊的等腰三角形。按边分类:三角形不等边三角形等腰三角形底和腰不等的等腰三角形等边三角形五、例题例用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?解:(1)设底边长为x㎝,则腰长2x㎝。x+2x+2x=18解得x=3.6所以,三边长分别为3.6㎝

5、,7.2㎝,7.2㎝.(2)如果长为4㎝的边为底边,设腰长为x㎝,则4+2x=18解得x=7如果长为4㎝的边为腰,设底边长为x㎝,则2×4+x=18解得x=10因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。由以上讨论可知,可以围成底边长是4㎝的等腰三角形。五、课堂练习课本第4页练习1、2题。六、课堂小结1、三角形及有关概念;2、三角形的分类;3、三角形三边的不等关系及应用。作业:课本第8页1、2题。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。