数字信号处理试卷.doc

数字信号处理试卷.doc

ID:52066869

大小:517.00 KB

页数:15页

时间:2020-03-22

数字信号处理试卷.doc_第1页
数字信号处理试卷.doc_第2页
数字信号处理试卷.doc_第3页
数字信号处理试卷.doc_第4页
数字信号处理试卷.doc_第5页
资源描述:

《数字信号处理试卷.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、…………试卷装订线………………装订线内不要答题,不要填写考生信息………………试卷装订线…………姓名学号专业班级学院武汉理工大学考试试卷(A卷)2010~2011学年2学期《数字信号处理》  课程闭卷时间120分钟,64学时,2学分,总分100分,占总评成绩70%2010年6月2日题号一二三四五六七八九十十一合计满分10512651212108812100得分得分一、判断并说明理由(10分)1、判断序列是否为周期序列,如果是,求其周期。(4分)2、判断系统是否为线性、时不变,因果、稳定系统,说明理

2、由。其中,与分别为系统的输入与输出。(6分)得分二、有一理想抽样系统,抽样频率为,抽样后经理想低通滤波器还原,其中:有两个输入信号,问输出信号是否有失真?(5分)15三、假设某离散时间系统由下面的差分方程描述得分试求1、求系统函数,并讨论的收敛域及系统的因果和稳定性。(6分)2、求稳定系统对应频率响应和单位脉冲相应。(6分)得分四、求序列的z变换,并画出零极点及收敛域图。(6分)15得分五、求下列信号的N(偶数)点DFT,其中(5分)得分六、一个5点的序列x(n)={1,0,2,1,3}1、试画

3、出x(n)*x(n)(3分)2、试画出x(n)⑤x(n)(3分)3、试画出x(n)⑩x(n)(3分)4、试说明如何用线性卷积结果计算N点圆周卷积,若x(n)同x(n)的某个N点圆周卷积同线性卷积相同,试问N的最小值是多少?(3分)15七、已知以一秒为周期均匀采样得到x(n)={1,0,2,1}。得分1、求频域X(k),并做出蝶形图。(6分)2、试进行谱分析,即求出振幅谱、相位谱和功率谱。(6分)得分得分八、设IIR数字滤波器系统函数为:试画出系统的级联和并联的信号流图。(10分)…………试卷装订

4、线………………装订线内不要答题,不要填写考生信息………………试卷装订线…………15…………试卷装订线………………装订线内不要答题,不要填写考生信息………………试卷装订线…………姓名学号专业班级学院得分得分九、设x(n)=n+3,0≤n≤9,h(n)={1,2,3,4},按N=4用重叠相加法计算线性卷积y(n)=x(n)﹡h(n)(8分)得分得分十、模拟低通滤波器的系统函数为,抽样周期T=0.5。试用脉冲响应不变法和双线性变换法分别设计数字滤波器,求系统函数。(8分)15得分十一、根据下列技术指标

5、,设计一个FIR低通滤波器。采样频率为,通带截止频率,阻带截止频率,阻带衰减不小于50dB。(12分)窗函数窗谱性能指标加窗后滤波器性能指标旁瓣峰值(dB)主瓣宽度过渡带宽/阻带最小衰减(dB)矩形窗-1320.9-21三角形窗-2542.1-25汉宁窗-3143.1-44汉明窗-4143.3-53布莱克曼窗-5765.5-74凯泽窗-5755-80(汉宁窗汉明窗)…………试卷装订线………………装订线内不要答题,不要填写考生信息………………试卷装订线…………1515…………装订线………………装订

6、线内不要答题,不要填写信息………………装订线…………武汉理工大学考试试题答案(A卷)2010~2011学年2学期《数字信号处理》 课程一、1.由于是有理数,所以是周期的,周期为14。(4分)2.令输入为,系统的输出为故系统是线性系统。假设输入为,则又因为很明显,所以系统不是时不变系统.由系统的输入与输出关系可以看出,当时,与将来时刻的输入有关,由因果系统的定义可知,该系统为非因果系统。假设输入有界,即此时输出满足因此系统为稳定系统。(6分)二、根据奈奎斯特定理可知,因为的频谱中最高频率为,所以输

7、出信号无失真。对于,其频谱中最高频率为,则输出信号失真。(5分)三、(1)对差分方程两端分别进行变换可得系统函数15(4分)有两个极点,,因此收敛域有三种情况:,,极点都在单位圆内,此时,收敛域对应的系统为因果稳定系统。(2分)(2)当系统稳定时,频率响应存在,且(2分)将展成部分分式,可得因此结合收敛域,求逆变换,有(4分)四、由z变换的定义,令,则其收敛域为。令,则15其收敛域为。,那么其收敛域包含,由于没有零极点抵消,所以收敛域就是。整理得(4分)可见有一个零点,有2个极点,另一个极点是,

8、则零极点图(收敛域为阴影部分)如图2-4所示。由于为有理函数,可以根据极点直接确定收敛域:有两个极点,,序列是双边序列,其收敛域为极点界定的圆环,由极点很容易确定收敛域为。因为收敛域包括单位圆,所以傅里叶变换存在。(2分)图的零极点图及收敛域15五、根据离散傅里叶变换的定义,(5分)六1、(3分)2、(3分)3、(3分)154、圆周卷积等于线性卷积以N为周期进行周期延拓,然后取主值序列的结果。如果圆周卷积等同于线性卷积,N≥5+5-1=9(3分)七、1、采用DFT-FFT算法,得X(k)={4,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。