欢迎来到天天文库
浏览记录
ID:51542152
大小:98.00 KB
页数:3页
时间:2020-03-12
《分解因式—公式法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3公式法(一)——运用平方差公式分解因式新业九年制学校:何青江授课时间:2014年4月16日上午第二节授课班级:七(2)班课题:运用平方差公式分解因式课时:第一课时课型:新授课教学方法:互动探究教学法教学目标知识目标:运用平方差公式分解因式。能力目标:掌握平方差公式的特点;能熟练地用平方差公式对多项式进行因式分解;知道因式分解的要求:把多项式的每一个因式都分解到不能再分解。情感目标:在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识和能力重点、难点重点:运用平方差公式分解因式。难点:使学生能把多项式转
2、换成符合平方差公式的形式进行因式分解。教学过程一知识回顾(1)什么叫做多项式的因式分解?(2)我们学习了什么方法进行因式分解?(3)怎样来找出公因式呢?二创设情境,导入新课1.如何把因式分解呢?(由此导入本节课的主题)提问:平方差公式。2.计算:;;3.这是我们学习的整式的乘法运算。如果上述等式左右两边互换位置,又是什么形式呢?;;4.这是因式分解的形式,我们是根据什么原理分解因式的呢?(学生分析、讨论、总结)三新课讲授1.如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平
3、方差公式分解因式。(公式表示为:)2.把乘法公式从左到右地使用,就可以把某些形式的多项式进行因式分解,这种因式分解的方法叫做公式法。3.观察平方差公式:思考,当一个多项式具有什么特点时可用平法差公式进行因式分解?①多项式可分为两部分;②每一部分可以写成平方的形式;③两部分的符号相反。四例题讲解例把下列多项式因式分解。(1);(2);(3);(4)。解:(1)(2)(3)(4)强调:(3)中,在因式分解时,必须进行到每一个因式都不能分解位置;(4)中,有公因式,应先提出公因式,再进一步进行因式分解。补充例题:;
4、;思维延伸:对于任意自然数,能被24整除吗?为什么?五随堂练习课本第64页,练习:1、2、3、4。六课堂小结1.当一个多项式具有什么特点时可用平法差公式进行因式分解?①多项式可分为两部分;②每一部分可以写成平方的形式;③两部分的符号相反。2.在因式分解时,必须进行到每一个因式都不能分解位置;3.有公因式,应先提出公因式,再进一步进行因式分解七作业布置课本第66页,习题3.3A组:第1题。八板书设计把黑板分为左、中、右三板块:左:用于标题、平方差公式及运用平方差公式分解因式的三个特点板书;中:用于例题讲解、补充
5、例题板书;右:用于分析、计算板书。2014年4月17日
此文档下载收益归作者所有