资源描述:
《高中数学必修1-4知识点总汇.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数学必修1-5常用公式及结论必修1:一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意,都有,则称A是B的子集。记作真子集:若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作AB集合相等:若:,则3.元素与集合的关系:属于不属于:空集:4、集合的运算:并集:由属于集合A或属于集合B的元素组成的集合叫并集,记为交集:由集合A和集合B中的公共元素组成的集合叫交集,记为补集:在
2、全集U中,由所有不属于集合A的元素组成的集合叫补集,记为5.集合的子集个数共有个;真子集有–1个;非空子集有–1个;6.常用数集:自然数集:N正整数集:整数集:Z有理数集:Q实数集:R二、函数的奇偶性1、定义:奇函数<=>f(–x)=–f(x),偶函数<=>f(–x)=f(x)(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于y轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;(4)如果一个函数的图象关于y轴对称,那么这个函数是偶函数.二、函数的单调性
3、1、定义:对于定义域为D的函数f(x),若任意的x1,x2∈D,且x1f(x1)–f(x2)<0<=>f(x)是增函数②f(x1)>f(x2)<=>f(x1)–f(x2)>0<=>f(x)是减函数2、复合函数的单调性:同增异减三、二次函数y=ax2+bx+c()的性质1、顶点坐标公式:,对称轴:,最大(小)值:2.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)两根式.四、指数与指数函数1、幂的运算法则:(1)am•an=am+n,(2),(3)(am)n=amn(4
4、)(ab)n=an•bn(5)(6)a0=1(a≠0)(7)(8)(9)2、根式的性质(1).(2)当为奇数时,;当为偶数时,.4、指数函数y=ax(a>0且a≠1)的性质:(1)定义域:R;值域:(0,+∞)(2)图象过定点(0,1)Y0X1a>10YX10b=logaN(2)loga1=0(3)logaa=1(4)logaab=b(5)alogaN=N(6)loga(MN)=logaM+logaN(7)loga()=lo
5、gaM--logaN(8)logaNb=blogaN(9)换底公式:logaN=(10)推论(,且,,且,,).(11)logaN=(12)常用对数:lgN=log10N(13)自然对数:lnA=logeA(其中e=2.71828…)2、对数函数y=logax(a>0且a≠1)的性质:(1)定义域:(0,+∞);值域:R(2)图象过定点(1,0)X0Y101六、幂函数y=xa的图象:(1)根据a的取值画出函数在第一象限的简图.a<001例如:y=x2七.图象平移:若将函数的图象右移、
6、上移个单位,得到函数的图象;规律:左加右减,上加下减八.平均增长率的问题如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.九、函数的零点:1.定义:对于,把使的X叫的零点。即的图象与X轴相交时交点的横坐标。2.函数零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并有,那么在区间内有零点,即存在,使得,这个C就是零点。3.二分法求函数零点的步骤:(给定精确度)(1)确定区间,验证;(2)求的中点(3)计算①若,则就是零点;②若,则零点③若,则零点;(4)判断是否达到精确度,若,则零点为或或内
7、任一值。否则重复(2)到(4)必修4一、三角函数与三角恒等变换1、三角函数的图象与性质函数正弦函数余弦函数正切函数图象定义域RR{x
8、x≠+kπ,k∈Z}值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数单调性增区间[-+2kπ,+2kπ]减区间[+2kπ,+2kπ]增区间[-π+2kπ,2kπ]减区间[2kπ,π+2kπ](k∈Z)增区间(-+kπ,+kπ)(k∈Z)对称轴x=+kπ(k∈Z)x=kπ(k∈Z)无对称中心(kπ,0)(k∈Z)(+kπ,0)(k∈Z)(k,0)(k∈Z)2、同角
9、三角函数公式sin2α+cos2α=1tanαcotα=13、二倍角的三角函数公式sin2α=2sinαcosαcos2α=2cos2α-1=1-2sin2α=cos2α-sin2α4、降幂公式5、升幂公式1±sin2α=(sinα±cosα)21+cos2α=2cos2α1-cos2α=2sin2α6、两角和差的三角函数公式sin(α±β)=sinαcos