欢迎来到天天文库
浏览记录
ID:48984916
大小:1.41 MB
页数:17页
时间:2020-02-26
《2019-2020学年山西省高二(上)10月联考数学试卷(文科).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020学年山西省高二(上)10月联考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,,则 A.B.C.D.2.(5分)给出下列命题.①若,,则;②若,则;③若,则;.其中正确的是 A.①②B.①③C.②③D.①②③3.(5分)已知圆柱的轴截面为正方形,且圆柱的体积为,则该圆柱的侧面积为 A.B.C.D.4.(5分)已知向量,,若,则 A.B.0C.1D.25.(5分)若各项均为正数的等比数列的前项和为,,,则 A.B.122C.123D.12
2、46.(5分)函数的定义域为 A.B.C.D.7.(5分)设,为两个不同的平面,,为两条不同的直线,则下列判断正确的是 A.若,,则B.若,,则C.若,,,则D.若,,则8.(5分)已知函数,则的单调递减区间为 A.,B.,C.,D.,9.(5分)设,为实数,满足,,则 第17页(共17页)A.的取值范围是,B.的取值范围是,C.的取值范围是,D.的取值范围是,10.(5分)函数,的部分图象如图所示,将的图象向右平移个单位长度后得到函数的图象,则 A.B.C.D.11.(5分)已知,,且,则的取值范围是 A.,B.,C.,D.,12.(5分)已
3、知等差数列的公差不为0,中的部分项成等比数列.若,,,则 A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.将答案填在答题卡中的横线上.13.(5分)已知,,则 14.(5分)如图,平面,为正方形,且,,分别是线段,的中点,则异面直线与所成角的余弦值为 .15.(5分)在中,内角,,所对的边分别为,,,若,,第17页(共17页)成等比数列,且,则 .16.(5分)在四面体中,,,,则四面体外接球的表面积是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知正方体,是底对角线的交点.求证:(1)面;
4、(2)面.18.(12分)已知函数,.(1)求解不等式;(2)若,求的最小值.19.(12分)已知函数.(1)当时,求不等式的解集;(2)若函数的图象与轴有两个交点,且两交点之间的距离不超过5,求的取值范围.20.(12分)如图,在三棱柱中,,,,平面.(1)证明:平面;(2)求点到平面的距离.第17页(共17页)21.(12分)某电子产品生产企业生产一种产品,原计划每天可以生产吨产品,每吨产品可以获得净利润万元,其中,由于受市场低迷的影响,该企业的净利润出现较大幅度下滑.为提升利润,该企业决定每天投入20万元作为奖金刺激生产.在此方案影响下预计每天可增产
5、吨产品,但是受原材料数量限制,增产量不会超过原计划每天产量的四分之一.试求在每天投入20万元奖金的情况下,该企业每天至少可获得多少利润(假定每天生产出来的产品都能销售出去).22.(12分)如图,在四棱锥中,底面为直角梯形,,,平面,是棱上一点.(1)证明:平面平面.(2)若,为点在平面上的投影,,,求四棱锥的体积.第17页(共17页)2019-2020学年山西省高二(上)10月联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,,则 A.B.
6、C.D.【解答】解:,,.故选:.2.(5分)给出下列命题.①若,,则;②若,则;③若,则;.其中正确的是 A.①②B.①③C.②③D.①②③【解答】解:对于①由知,故①正确;对于②,不妨设,.则,故②错误;对于③,因为.所以.又,所以,故③正确.故选:.3.(5分)已知圆柱的轴截面为正方形,且圆柱的体积为,则该圆柱的侧面积为 A.B.C.D.【解答】解:设圆柱的底面半径为.因为圆柱的轴截面为正方形,所以该圆柱的高为.因为该圆柱的体积为,,解得,所以该圆柱的侧面积为.故选:.4.(5分)已知向量,,若,则 A.B.0C.1D.2第17页(共17页)【
7、解答】解:,,,解得.故选:.5.(5分)若各项均为正数的等比数列的前项和为,,,则 A.B.122C.123D.124【解答】解:因为,所以.又,所以,,故.故选:.6.(5分)函数的定义域为 A.B.C.D.【解答】解:函数,所以,即,解得,所以的定义域为.故选:.7.(5分)设,为两个不同的平面,,为两条不同的直线,则下列判断正确的是 A.若,,则B.若,,则C.若,,,则D.若,,则【解答】解:根据垂直于同一个平面的两条直线平行,所以选项不正确;若,,则;选项正确;第17页(共17页)因为根据面面垂直的性质定理,需要加上“在平面内或者平行于”
8、这个条件,才能判定;选项不正确;直线可能在平面内.选项不正确;故选
此文档下载收益归作者所有