欢迎来到天天文库
浏览记录
ID:47609194
大小:1.35 MB
页数:19页
时间:2019-09-30
《湖南省株洲市2019届高三数学教学质量统一检测试题(一)理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、湖南省株洲市2019届高三教学质量统一检测(一)理科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,集合,则()A.B.C.D.【答案】C【解析】【分析】先求,再根据并集定义求结果.【详解】因为,所以,选C.【点睛】本题考查集合的补集与并集,考查基本分析求解能力,属基本题.2.在区间上任意取一个数,使不等式成立的概率为()A.B.C.D.【答案】D【解析】【分析】先解不等式,再根据几何概型概率公式计算结果.【详解】由得,所以所求概率为,选D.【点睛】(1)当
2、试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.-19-3.已知各项为正数的等比数列满足,,则()A.64B.32C.16D.4【答案】B【解析】【分析】先根据条件求公比,再根据等比数列通项公式求详解】由得选B.【点睛】本题考查等比数
3、列通项公式,考查基本分析求解能力,属基本题.4.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据欧拉公式计算,再根据复数几何意义确定象限.【详解】因为,所以对应点,在第二象限,选B.【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.-19-5.已知、是不等式组所表示的平面区域内的两个不同的点,则的最大值是()A.B.C.D.【答
4、案】A【解析】分析】先作可行域,再根据图象确定的最大值取法,并求结果.【详解】作可行域,为图中四边形ABCD及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD为直径,所以的最大值为BD=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6.若均不为1的实数、满足,且,则()-19-A.B.C.D
5、.【答案】B【解析】【分析】举反例说明A,C,D不成立,根据基本不等式证明B成立.【详解】当时;当时;当时;因为,,所以,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.7.一个几何体的三视图如图所示,则该几何体的体积为A.B.C.D.10【答案】A【解析】【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可.【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为,-19-故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题
6、.8.如图,边长为1正方形,射线从出发,绕着点顺时针方向旋转至,在旋转的过程中,记,所经过的在正方形内的区域(阴影部分)的面积为,则函数的图像是()A.B.C.D.【答案】D【解析】分析】根据条件列,再根据函数图象作判断.【详解】当时,;当时,;根据正切函数图象可知选D.-19-【点睛】本题考查函数解析式以及函数图象,考查基本分析识别能力,属基本题.9.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入、、的值分别为6、8、0,则输出和的值分别为()A.0,3B.0,4C.2,3D.2,4【答
7、案】C【解析】【分析】执行循环,直至终止循环输出结果.【详解】执行循环,得,结束循环,输出,此时,选C.【点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10.已知函数的图像关于轴对称,则的图像向左平移()个单位,可以得到的图像().A.B.C.D.【答案】D【解析】【分析】-19-根据条件确定关系,再化简,最后根据诱导公式确定选项.【详解】因为函数的图像关于轴对称
8、,所以,,即,因此,从而,选D.【点睛】本题考查偶函数性质、诱导公式、三角函数图象变换,考查基本分析识别能力,属中档题.11.已知一条抛物线恰好经过等腰梯形的四个顶点,其中,,则
此文档下载收益归作者所有