欢迎来到天天文库
浏览记录
ID:47306842
大小:1.50 MB
页数:38页
时间:2019-08-19
《初三二次函数与图像综合题有答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2015学年度二次函数及图像综合题1.如图,二次函数的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧.⊙M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.2.(6分)已知二次函数y=+bx+c的图象如图所示,它与x轴的一个交点的坐标为(-1,0),与y轴的交点坐标为(0,-3).O-3-1xy(1)求此二次函数的解析式;(2)求此二次函数的图象与x轴的另一个交点的
2、坐标;(3)根据图象回答:当x取何值时,y<0?3.如图,二次函数的图象经过A、B、C三点.-14AB5OxyC(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(5分)(2)求此抛物线的顶点坐标和对称轴;(4分)(3)观察图象,当x取何值时,y<0?(3分)4.已知抛物线与x轴只有一个交点,且交点为.(1)求b、c的值;(2)若抛物线与y轴的交点为B,坐标原点为O,求△OAB的面积(答案可带根号)5.已知二次函数y=ax2+bx+2,它的图象经过点(1,2).(1)如果用含a的代数式表示b,那么b=;(2)如图所示,如果该图象与x轴的一个交点为(﹣1,0).①求二次函数的表达式
3、,并写出图象的顶点坐标;②在平面直角坐标系中,如果点P到x轴与y轴的距离相等,则称点P为等距点.求出这个二次函数图象上所有等距点的坐标.(3)当a取a1,a2时,二次函数图象与x轴正半轴分别交于点M(m,0),点N(n,0).如果点N在点M的右边,且点M和点N都在点(1,0)的右边.试比较a1和a2的大小.6.如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标;(2)求△EMF与△BNF的面积之比.7.在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别
4、相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的解析式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;(3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.8.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).9.如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB
5、.(1)求该抛物线的解析式;(2)求证:△OAB是等腰直角三角形;(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.10.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.11.如图,二次函数y=x2+bx+c经过点(-1,0)和点(0,-3).(1)求二次函数的表达式;(2)如果一次函数y=4x+m的图象与二次函数的
6、图象有且只有一个公共点,求m的值和该公共点的坐标;(3)将二次函数图象y轴左侧部分沿y轴翻折,翻折后得到的图象与原图象剩余部分组成一个新的图象,该图象记为G,如果直线y=4x+n与图象G有3个公共点,求n的值.12.如图,已知c<0,抛物线y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y轴交于点C.(1)若x2=1,BC=,求函数y=x2+bx+c的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.13.如图,已知抛物线y=x2
7、+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.14.锐角中,,,两动点分别在边上滑动,且,以为边向下作正方形,设其边长为,正方形与公共部分的面积为.(1)中边上高;(2)当时,恰好落在边上(如图1);(3)当在外部时(如图
此文档下载收益归作者所有