欢迎来到天天文库
浏览记录
ID:47080727
大小:318.17 KB
页数:15页
时间:2019-07-18
《初中数学辅助线大全-详细例题付》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用文档初中数学辅助线大全详细例题付答案[引出问题]在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。下面我们分别举例加以说明。[例题解析]一、倍角问题CABD例1:如图1,在△ABC中,AB=AC,BD⊥AC于D。求证:∠DBC=∠BAC.分析:∠DBC、∠BAC所在的两个三角形有公共角∠C,可利用三角形内角和来沟
2、通∠DBC、∠BAC和∠C的关系。证法一:∵在△ABC中,AB=AC,∴∠ABC=∠C=(180°-∠BAC)=90°-∠BAC。∵BD⊥AC于D∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-∠BAC)=∠BAC即∠DBC=∠BAC分析二:∠DBC、∠BAC分别在直角三角形和等腰三角形中,由所证的结论“∠DBC=½∠BAC”中含有角的倍、半关系,因此,可以做∠A的平分线,利用等腰三角形三线合一的性质,把½∠A放在直角三角形中求解;也可以把∠DBC沿BD翻折构造2∠DBC求解。ECABD证法二:如图2,作AE⊥BC于E,则∠EAC+∠C=90°∵AB=AC∴∠EAG=
3、∠BAC∵BD⊥AC于D∴∠DBC+∠C=90°∴∠EAC=∠DBC(同角的余角相等)即∠DBC=∠BAC。证法三:如图3,在AD上取一点E,使DE=CDECABD连接BE∵BD⊥AC∴BD是线段CE的垂直平分线∴BC=BE∴∠BEC=∠C∴∠EBC=2∠DBC=180°-2∠C∵AB=AC∴∠ABC=∠C∴∠BAC=180°-2∠C∴∠EBC=∠BAC∴∠DBC=∠BAC说明:例1也可以取BC中点为E,连接DE,利用直角三角形斜边的中线等于斜边的一半和等腰三角形的性质求解。同学们不妨试一试。文案大全实用文档例2、如图4,在△ABC中,∠A=2∠B求证:BC2=AC2+AC•AB分
4、析:由BC2=AC2+AC•AB=AC(AC+AB),启发我们构建两个相似的三角形,且含有边BC、AC、AC+AB.又由已知∠A=2∠B知,ABACBA构建以AB为腰的等腰三角形。证明:延长CA到D,使AD=AB,则∠D=∠DBA∵∠BAC是△ABD的一个外角∴∠BAC=∠DBA+∠D=2∠D∵∠BAC=2∠ABC∴∠D=∠ABC又∵∠C=∠C∴△ABC∽△BDC∴∴BC2=AC•CDAD=AB∴BC2=AC(AC+AB)=AC2+AC•AB一、中点问题EGDFCAB例3.已知:如图,△ABC中,AB=AC,在AB上取一点D,在AC的延长线上取一点E,连接DE交BC于点F,若F是D
5、E的中点。求证:BD=CE分析:由于BD、CE的形成与D、E两点有关,但它们所在的三角形之间因为不是同类三角形,所以关系不明显,由于条件F是DE的中点,如何利用这个中点条件,把不同类三角形转化为同类三角形式问题的关键。由已知AB=AC,联系到当过D点或E点作平行线,就可以形成新的图形关系——构成等腰三角形,也就是相当于先把BD或CE移动一下位置,从而使问题得解。证明:证法一:过点D作DG∥AC,交BC于点G(如上图)∴∠DGB=∠ACB,∠DGF=∠FCE∵AB=AC∴∠B=∠ACB∴∠B=∠DGB∴BD=DG∵F是DE的中点∴DF=EF在△DFG和△DEFC中,∴△DFG≌EFC
6、∴DG=CE∴BD=CEABCDHEF文案大全实用文档证法二:如图,在AC上取一点H,使CH=CE,连接DH∵F是DE的中点∴CF是△EDH的中位线∴DH∥BC∴∠ADH=∠B,∠AHD=∠BCA∵AB=AC∴∠B=∠BCA∴∠ADH=∠AHD∴AD=AH∴AB-AD=AC-AH∴BD=HC∴BD=CE说明:本题信息特征是“线段中点”。也可以过E作EM∥BC,交AB延长线于点G,仿照证法二求解。例4.如图,已知AB∥CD,AE平分∠BAD,且E是BC的中点ABCEF求证:AD=AB+CD证法一:延长AE交DC延长线于F∵AB∥CD∴∠BAE=∠F,∠B=∠ECF∵E是BC的中点∴B
7、E=CE在△ABE和△CEF中∴△ABE≌△CEF∴AB=CF∵AE平分∠ABD∴∠BAE=∠DAE∴∠DAE=∠F∴AD=DF∵DF=DC+CFDABCEFCF=AB∴AD=AB+DC证法二:取AD中点F,连接EF∵AB∥CD,E是BC的中点∴EF是梯形ABCD的中位线∴EF∥AB,EF=(AB+CD)∴∠BAE=∠AEF∵AE平分∠BAD∴∠BAE=∠FAE∴∠AEF=∠FAE∴AF=EF∵AF=DF∴EF=AF=FD=AD∴(AB+CD)=AD∴AD=AB+CD
此文档下载收益归作者所有