数学建模论文设计-物资调度问题

数学建模论文设计-物资调度问题

ID:47036672

大小:996.19 KB

页数:24页

时间:2019-07-03

数学建模论文设计-物资调度问题_第1页
数学建模论文设计-物资调度问题_第2页
数学建模论文设计-物资调度问题_第3页
数学建模论文设计-物资调度问题_第4页
数学建模论文设计-物资调度问题_第5页
资源描述:

《数学建模论文设计-物资调度问题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准物资调度问题摘要“运输调度”数学模型是通过运输车运输路线的确定以及运输车调配方案的确定来使运输的花费最小。本文首先分析了物资调度中运费、载重量及各站点需求量间相互关系。而后,紧抓住总运营费用最小这个目标,找出最短路径,最后完成了每辆运输车的最优调度具体方案。问题一:根据题目及实际经验得出运输车运输物资与其载重量及其行驶的路程成正比例关系,又运输的价格一定,再结合题目给出的条件“运输车重载运费2元/吨公里”,其重载运费的单位“元/吨公里”给我们的启发。于是结合题目给定的表,我们将两个决策变量(载重量,路程)化零为整为一个花费因素来考虑,即从经济的角度来考虑。同理我们将

2、多辆车也化零为整,即用一辆“超大运输车”来运输物资。根据这样从经济的角度来考虑,于是我们将需求点的需求量乘入需求点的坐标得到一个新的表,即花费经济表,我们再运用数学软件作出一个新的坐标,这样可以得到一个花费坐标。于是按照从经济花费最少的角度,根据我们所掌握的最短路径及算法再结合数学软件,可求得经济花费坐标上的最短路径。具体求法上,采用了算法结合“最优化原理”,先保证每个站点的运营费用最小,从而找出所有站点的总运营费用最小,即找出了一条总费用最低的最短路径。用我们的“超大运输车”走这条最小花费的路线,我们发现时间这个因素不能满足且计算结果与实际的经验偏差较大。于是我们重新分配

3、路线,并且同时满足运输车工作时间这个因素的限制,重新对该方案综合考虑,作出了合理的调整.此处我们运用了“化整为零”的思想,将该路线分为八条路径。同时也将超大车进行分解,于是派八辆运输车向29个需求点运送物资。同样的道理我们也将运输车运送物资从经济的角度看,即将运量乘以其速度,又因运输的价格一定,因此便可以将运输车在整体上从经济考虑。于是便可以将整体从经济上来考虑。将运输最小花费转化从经济方面来考虑比较合理。由此可求解出运输车全程的最低费用:结合各约束条件求得最低费用为1980.16元。问题二:由题目知运输车的载重量不同,但由于我们从整体的经济上来考虑运输物资的花费最少问题,

4、因此花费坐标的最短路径仍然不变。因此结合运输车工作时间的这个因素,我们仍用问题一的思路,运用“化零为整”,“化整为零”的思想来考虑第二问。按照这样的的思路我们制定了八条路线,派了七辆运输车来运送物资。同样在整体上对问题从经济上来考虑比较合理。结合各约束条件求得最低费用为1969.66元,需要7辆车关键词:物资调度最短路线最优化原理Dijkstra算法0-1规划文档大全实用标准一、问题重述1.1.背景资料与条件某城区有29个物资需求点,需求点的地理坐标和每天物资的需求量见如下表一。(表一为原表截取的一部分,原表其余部分见附录一)。每天凌晨都要从仓库(第30号站点)出发将物资运

5、至每个需求点。现有已知一种运输车,载重6吨,运输车平均速度为40公里/小时,每台车每日工作4小时,每个需求点需要用10分钟的时间下货。运输车重载运费2元/吨公里,空载费用0.5元/公里;并且街道方向均平行于坐标轴。29个需求点物资需求量及地理坐标站点编号需求量T坐标(km)站点编号需求量T坐标(km)xyxy12.5032161.5021621.0015170.8061831.5054181.50111741.2047190.90151250.8508201.4019961.30311211.20225下图为29个需求点的地理坐标示意图:图一:各需求点地理坐标图1.2.需要

6、解决的问题问题一:在运输车的载重固定为6吨的情况下,为使运输费用最小,怎样调动运输车(包括运输车的数量,每台车的运营路线及费用)。文档大全实用标准问题二:在运输车的载重分为三类(四吨,六吨,八吨)的情况下,为使运输费用最小,怎样调动运输车(包括运输车的数量,每台车的运营路线及费用)。二、问题分析2.1.问题的重要性分析(社会背景)现代社会经济高速发展,各种信息物资交流频繁,特别是当今,对如何优化物资分配,降低经济成本,时间成本的要求十分迫切。研究在使费用最小情况下的物资调度问题,对于满足各地物资需求,优化资源配置,促进经济社会发展具有十分重要的意义。2.2.有关方面在这个问

7、题上做过的研究[2]物流配送车辆优化调度问题最早是由学者Dantzig和Ramser于1959年首次提出的,国外一般称之为vehicleroutingproblem或vehicleschedulingproblem.一般以为,不考虑时间要求,仅根据空间位置安排线路时称为车辆线路安排问题VRP;考虑时间要求,安排线路时称为车辆调度问题VSP。目前针对车辆优化调度问题的求解算法可以说是相当丰富,根据对这些算法本质的分类研究,基本上可以分为精确算法和启发式算法两大类.精确算法指可求出最优解的算法,主要有分枝定界法、割平面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。