7、B1A2A1B20xF1x=ax=-aB2B1yxA2A10F1F2三、请思考?我们已经研究了焦点在x轴上的双曲线的几何性质,那么当焦点在y轴上的双曲线的几何性质又如何呢?标准方程x2/a2-y2/b2=1(a>0,b>0)y2/a2-x2/b2=1(a>0、b>0)几何图形范围x≥a或x≤-a对称性中心对称,轴对称顶点a、b、c的含义离心率e焦距与实轴长的比e=c/ae>1y≥a或y≤-a中心对称,轴对称A1(0,-a),A2(0,a)A1(-a,0),A2(a,0)a(实半轴长)c(半焦距长)b(虚半轴长)a2=c2-b2a(实半轴长)c(半焦距长)b(虚半轴长)a2=c2-b
8、2焦距与实轴长的比e=c/ae>1yxoA2A1B1B2F1F2yF2A2A1B20xF1x=ax=-ay=ay=-aB1四、让我们来讨论双曲线的顶点就是双曲线与坐标轴的交点,你认为对吗?讨论并给出答案.yF2B1A2A1B20xF1五、让我们共同分析例1、求双曲线9y2-16x2=144的半实轴长和半虚轴长、焦点坐标、离心率.分析:①化为标准方程:y2/16-x2/9=1②确定焦点位置:在y轴上③找出a、b的值:a=4,b=3④代入关系式c2=a2+b2=25、e=c/a=5/4⑤写出结果:a=4,b=3,F1(0,5),F2(0,-5),e=5/4.六、练一练求下列双曲线的实半
9、轴长和虚半轴长及顶点坐标.(1)x2-4y2=16(2)x2/49-y2/25=-1解答:(1)a=4,b=2,A1(-4,0),A2(4,0)(2)a=5,b=7,A1(0,-5),A2(0,5)请思考:如若求半焦距长和离心率呢?小结:关键在于求实半轴a的长和虚半轴b的长,然后代入关系式c2=a2+b2、e=c/a求半焦距c的长及离心率.七、让我们继续研究请观察双曲线的图象和矩形对角线,有何特征?双曲线x2/a2-y2/b2=1(a>0、b>0)的各支向外延伸时,与矩形的两条对角线所在的直线逐渐接近.请思考:结论正确吗?F2yB1A2A1B20xF1(一)、我们共同来设计一个方案
10、:八、我们一起来证明1、由双曲线的对称性我们只需研究第一象限的情形;2、如何说明双曲线x2/a2-y2/b2=1在第一象限内与矩形的对角线所在的直线逐渐接近且不相交呢?M(x,y)Q(2)如何说明
11、MQ
12、逐渐减小且不等于0呢?0xybaLN(x,Y)(3)如何证明
13、MN
14、逐渐减小且不等于0呢?我们可用方程的思想解决:
15、MN
16、=Y-y,求出M、N点坐标即可.为此我们过点M作一条直线L与y轴平行,交矩形对角线与N点,坐标记为N(x,Y).我们需证明N点在M点上方,即证y<Y.又
17、MQ
18、<
19、MN
20、,所只需证明
21、MN
22、逐渐减小且不等于0即可.(1)我们在第一象限内双曲线图象上任取一点M(x
23、,y),过M点向矩形的对角线y=bx/a引垂线,垂足为Q点。我们只需说明
24、MQ
25、逐渐减小且不等于0即可.(二)、我们来证明先取双曲线在第一象限内的部分进行证明这一部分的方程可写为0xyN(x,Y)QM(x,y)在该式子中x(x≥a)逐渐增大时,
26、MN
27、逐渐减小且不等于0.又
28、MQ
29、<
30、MN
31、,所以
32、MQ
33、逐渐减小且不等于0.即双曲线x2/a2-y2/b2=1在第一象限内与矩形的对角线所在的直线逐渐接近且不相交.在其它象限内,我们可类似证明.yN(x,Y)M(x,y)0