2018-2019学年高二数学上学期第二次月考(期中)试题 理

2018-2019学年高二数学上学期第二次月考(期中)试题 理

ID:45206356

大小:134.00 KB

页数:7页

时间:2019-11-10

2018-2019学年高二数学上学期第二次月考(期中)试题 理_第1页
2018-2019学年高二数学上学期第二次月考(期中)试题 理_第2页
2018-2019学年高二数学上学期第二次月考(期中)试题 理_第3页
2018-2019学年高二数学上学期第二次月考(期中)试题 理_第4页
2018-2019学年高二数学上学期第二次月考(期中)试题 理_第5页
资源描述:

《2018-2019学年高二数学上学期第二次月考(期中)试题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、xx-2019学年高二数学上学期第二次月考(期中)试题理时间120分钟总分150分第I卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。将正确答案选项涂在答题卡上)1、从含有8件正品、2件次品的10件产品中,任意抽取3件,则必然事件是(  )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品2、某工厂生产甲、乙、丙三种型号的产品,产品数量之比为2:3:5,现按型号用分层抽样的方法随机抽出容量为n的样本,若抽到24件乙型产品,则n等于(  )A.80B.70C.60D.503、我

2、国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1533石,验得米内夹谷,抽样取米一把,数得254粒内夹谷56粒,则这批米内夹谷约为(  )A.1365石B.338石C.168石D.134石4、执行下面程序框图,当x1=6,x2=9,p=8.5时,x3等于()A.7B.8C.10D.115、下列说法不正确的是(  )A.对于线性回归方程=x+,直线必经过点(,);B.茎叶图的优点在于它可以保存原始数据,并且可以随时记录;C.用秦九韶算法求多项式f(x)=3x5﹣2x3+6x2+x+1=2时的值时,v2=14;D.将一组数据中的每一个数据都加上或减去同

3、一个常数后,方差恒不变.6、下列四个数中数值最大的是(  )A.1111(2)B.16C.23(7)D.30(6)7、将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()种A.480B.360C.240D.1208、一名工人维护3台独立的游戏机,一天内3台游戏机需要维护的概率分别为0.9、0.8和0.75,则一天内至少有一台游戏机不需要维护的概率为()A.0.995B.0.54C.0.46D.0.0059、一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机取出两个球,记事件A为“取出的两个球颜色不同”,

4、事件B为“取出一个黄球,一个绿球”,则()A.B.C.D.10、随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为(  )A.B.C.D.11、若随机变量X~B(4,),则D(2X+1)=(  )A.2B.4C.8D.912、一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P(ξ=12)等于(  )A.C1210()10•()2B.C119()9()2•C.C119()9•()2D.C119()9•()2第II卷(非选择题共90分)二、填空题:(本

5、大题共4小题,每小题5分,共20分)13、从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)=  .(结果用最简分数表示)14、天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0〜9之间随机整数的20组如下:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989通过以上随机模拟的数据可知三天

6、中恰有两天下雨的概率近似为      .15、已知随机变量的分布列如下表,又随机变量,则的均值是X-101Pa三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17、已知随机变量服从正态分布,其正态曲线在上是增函数,在上为减函数,且.(;).(1)求参数,的值;(2)求的值.18、已知的展开式中各项的二项式系数之和为32.(1)求的值;(2)求的展开式中项的系数;(3)求展开式中的常数项.19、某学校参加某项竞赛仅有一个名额,结合平时训练成绩,甲、乙两名学生进入最后选拔,学校为此设计了如下选拔方案:设计6道测试题,若这6道题中,甲能正确解答

7、其中的4道,乙能正确解答每个题目的概率均为.假设甲、乙两名学生解答每道测试题都相互独立,互不影响,现甲、乙从这6道测试题中分别随机抽取3题进行解答.(1)求甲、乙两名学生共答对2道测试题的概率;(2)从数学期望和方差的角度分析,应选拔哪个学生代表学校参加竞赛?20、甲乙两人下棋比赛,规定谁比对方先多胜两局谁就获胜,比赛立即结束;若比赛进行完6局还没有分出胜负则判第一局获胜者为最终获胜且结束比赛.比赛过程中,每局比赛甲获胜的概率为,乙获胜的概率为,每局比赛相互独立.求:(1)比赛两局就结束且甲获胜的概率;(2)恰好比赛四局结束的概率;(3)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。