欢迎来到天天文库
浏览记录
ID:45076512
大小:965.50 KB
页数:24页
时间:2019-11-09
《2019-2020年高考数学二轮复习专题1.3三角函数与平面向量教学案(I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学二轮复习专题1.3三角函数与平面向量教学案(I)一.考场传真1.【xx课标1,理9】已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【答案】D2.
2、【xx课标3,理6】设函数f(x)=cos(x+),则下列结论错误的是A.f(x)的一个周期为−2πB.y=f(x)的图像关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【答案】D【解析】函数的最小正周期为,则函数的周期为,取,可得函数的一个周期为,选项A正确;函数的对称轴为,即:,取可得y=f(x)的图像关于直线x=对称,选项B正确;,函数的零点满足,即,取可得f(x+π)的一个零点为x=,选项C正确;当时,,函数在该区间内不单调,选项D错误;故选D.3.【xx课标3,理12】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=
3、+,则+的最大值为A.3B.2C.D.2【答案】A,解得,所以的最大值是3,即的最大值是3,故选A.4.【xx课标II,理12】已知是边长为2的等边三角形,P为平面ABC内一点,则的最小是()A.B.C.D.【答案】B【解析】以为轴,的垂直平分线为轴,为坐标原点建立坐标,则,,,设,所以,,所以,当时,所求的最小值为,故选B.5.【xx课标1,理13】已知向量a,b的夹角为60°,
4、a
5、=2,
6、b
7、=1,则
8、a+2b
9、=.【答案】6.【xx课标II,理14】函数()的最大值是.【答案】1【解析】化简三角函数的解析式:,由自变量的范围:可得:,当时,函数取得最大值1.7.【xx课标1,理17
10、】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.8.【xx课标II,理17】的内角所对的边分别为,已知,(1)求;(2)若,的面积为,求.【解析】(1)由题设及,,故.上式两边平方,整理得,解得(舍去),.(2)由得,故.又,则.由余弦定理及得:,所以b=2.9.【xx课标3,理17】△ABC的内角A,B,C的对边分别为a,b,c.已知,a=2,b=2.(1)求c;(2)设D为BC边上一点,且ADAC,求△ABD的面积.二.高考研究【考纲解读】1.考纲要求考纲要求:三角函数:①了解任意
11、角、弧度制的概念,理解任意角三角函数的定义;②理解同角三角函数的基本关系式,能用诱导公式进行化简求值证明;③掌握三角函数的图像与性质,了解函数的图像,了解参数对函数图像变化的影响;④掌握和差角、二倍角公式,能运用公式进行简单的恒等变换;⑤掌握正弦定理、余弦定理和面积公式,并能解决一些简单的三角形度量问题.平面向量:掌握向量的加法和减法,掌握实数与向量的积,解两个向量共线的充要条件,解平面向量基本定,解平面向量的坐标概念,掌握平面向量的坐标运算,掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处有关长度、角度和垂直问题,掌握向量垂直的条件.【命题规律】(1)高考对三角函数图象的考
12、查主要包括三个方面:一是用五点法作图,二是图象变换,三是已知图象求解析式或求解析式中的参数的值,常以选择题或填空题的形式考查.(2)高考对三角函数性质的考查是重点,以解答题为主,考查y=Asin(ωx+φ)的周期性、单调性、对称性以及最值等,常与平面向量、三角形结合进行综合考查,试题难度属中低档.(3)三角恒等变换包括三角函数的概念,诱导公式,同角三角函数间的关系,和、差角公式和二倍角公式,要抓住这些公式间的内在联系,做到熟练应用.(4)解三角形既是对三角函数的延伸又是三角函数的主要应用,因此,在一套高考试卷中,既有选择题、填空题,还有解答题.(5)平面向量的命题以客观题为主,主要考查平面
13、向量的基本概念、向量的线性运算、向量的平行与垂直、向量的数量积,考查数形结合的数学思想,在解答题中常与三角函数相结合,或作为解题工具应用到解析几何问题中.3.学法导航1.已知函数y=Asin(ωx+φ)(A>0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.2.
此文档下载收益归作者所有