高三数学三模考试试题理(辽师大附中三模)

高三数学三模考试试题理(辽师大附中三模)

ID:44339369

大小:1.12 MB

页数:38页

时间:2019-10-21

高三数学三模考试试题理(辽师大附中三模)_第1页
高三数学三模考试试题理(辽师大附中三模)_第2页
高三数学三模考试试题理(辽师大附中三模)_第3页
高三数学三模考试试题理(辽师大附中三模)_第4页
高三数学三模考试试题理(辽师大附中三模)_第5页
资源描述:

《高三数学三模考试试题理(辽师大附中三模)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、1.辽师附中高三年级第三次模拟考试数学试卷(理)(考试时间120分钟满分150分)本试卷分为选择题(共60分)和非选择题(共90分)两部分第一部分(选择题共60分)-、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的),复数22L=1-2iA2+4iB2.已知集合A={x

2、x=sin4-2iC2-4iDk兀-4+2i3.A{-1,0}B{0已知直线I丄a平面,kZ},B={x

3、

4、2,1}C{0}pm

5、

6、平面X则AnB=()a则“-2充分不必要条件必要不充分条件充要条件既非充分也非必要条件4.一个儿何体的三视图如图所示,则该儿何体的体积为3=3+e(o5.把

7、函数ysin(x)(1D20,1I7T)的图象向左平移6再将图像上所有点的横坐标伸长到原来的变)所彳彎蜃象解飯武为2倍(纵坐标不)ysinx,g=_(e=t1co=-22,126.执行如图所示的程序框图,若输出结果为)2D<4++输入的实数XA1值的个数为(B2CIX3,则可个单位,满足条件(k为常数)2x3x的最大值为y8,则k=A163的同性大学生的概率为-,则男女生相差(2D109.等比数列,32852,atan+iA16(14n1B16(1232n32nc3(14)D3(12)+—-=>>22的一个焦点,B是短轴的一个端点,Xy延10.已知F是椭圆C1(0

8、)=ab22abrrr长线交C于皆D,且BFylvV2FD,则C的离心率为)线段BF的BC6D14.设2yx围成图形的面积f(x)xf(j)0j成立,若a=(2八2)他D>fW2),>>>>11c(logi)f(log),则a,b,c的大小关系是()••144c22AabcBacbdr\■bacCcabDr12.如图,边长为1的正方形ABCD的顶点A,D分别在x轴、丫车牡半轴上移茹,则•{}++==OBoc的最大值是()A

9、2-+B】12C3D4l丿2已知函数yf(x1)的图象关于直线x1对称,且当x(,0)吋,0.2、2.0第二部分(非选择题共90分)

10、二、填空题(木大题共4小题,每小题5分,满分20分)z=z=°13•已a为等差数列,若9384389,则知Son3的展开式中的常数项为a,则直线y为15.在四面体ABCD中,已知ADBBDCCDA60,ADBD3,CD2,则四面体ABCD的外接球的半径为15.给出下列四个命题:①命题“%<^,cosX的否定是:“X于©OSX0玉②若lga+lgb=lg(a+b),S'Jb增勺最大值为4;③定义在R上的f(x^^^xy)x©(y)yf-(x),fi(x)为奇函数;④已知随机变量C服从正态分布N(1,°2),P(:-5)=0.81,隨色厂0^19;其中真命题的序号是请把

11、所有真命题的序号憑上)•三、解答题(将正确答案书写在答题纸的相应位蚤)17.(本小题满分12分)(本题丫苗分12分)已知向量a(=3)sin2x,cos2x),(I)若€12L込一「+±=一3X(,),ab,求cos4x;241225A2(IIL设ABC的三边a,b,c满址ac,且边b所对应的角为+-=b=(cos2x,"cos2x)x,若关于X的方程1abm有且仅有一个实数根,求2m的值.18.(本小题满分12分)如图,在梯形ABCD中,ACFE为矩形,平面ACFE±平面ABCD,CF=1.(1)求证:BC丄平面ACFE;(2)点M在线既上运动,设平面MAB与00

12、。),平面FCB詐成二面角的平面角为(<90。,四边形AB

13、

14、CD,AD=DC=CB=,12ABC=6O试求cos的取值范围19.(本小题满分12分)已知盒中有大小相同的个红球t个白球,从盒中一次性取出2个球,取到白球个数的期望为若每次从口袋中任7取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X(1)若取到红球再放回,求X不大于2的概率;(2)若取出的红球不放回,求X的概率分布与数学期望.20.(本小题满分12分)已知1SC的中心在原点,焦点在x轴上,离心率为求幽的标准方程;(II)直线x=2与㈱交于P、Q两点,A、B是购上位于直线PQ

15、iW侧的动点,且直线AB的斜率为・2①求四边形APBQ面积的最大值;②设直线pa的斜率为k,直线PB的斜率为k2,1判断k+k2的值是否为常数,并说明爲1和函数g(x)=Inx,兄x)=f(x)"2—2xsina2ax121.(本小题瀰12分)已知函数f(x)=7T7T_2-+g(x)・a(1)当二=3时,若f(x)在口,2]上的最大值是f⑵,求实数a的取值范围(2)当a=i吋,判断Rx)在其定义域内是否有极值,并予以证明;(1)对任意的e[),若F(x)在其定义域内既有极大值又有极小值,试求实a的取63值范围22.(本小题瀰10分)选修仁几何证明选讲已知C点在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。