资源描述:
《2018高考数学(理)冲刺模拟试题(三)附答案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、最新2018高考数学(理)冲刺模拟试题(三)附答案文科数学试题本试卷共4页,23题(含选考题)。全卷满分150分。考试用时120分钟。一•选择题1.若集合M二{(x,y)
2、x+y=0},N={(x,y)
3、x2+y2二0,x^R,yER},则有()A・MUN=MQN=02.已知复数数的虚部为(A・B・MUN=NC・MAN=MD・M(i为虚数单位),则复数Z的共轨复)B.C.1D.3.下列命题中,真命题是A.,使得C・B・D.是的充分不必要条件4.某程序框图如图,该程序运行后输出的的值是()A.4B・5C・6D・75.已知,,,则的大小关系为A・B
4、・C・D・3.在满足条件的区域内任取一点,则点满足不等式的概率为()A・B・C・D・4.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器商鞅铜方升,其三视图如图所示(单位:寸),若取3,其体积为12.6(立方寸),则图中的为()A.1.6B.1.8C.2.0D.2.4&已知函数,,若的最小值为,且,贝U的单调递增区间为()A.B.C・D.9.定义在R上的连续函数满足,且时,恒成立,则不等式的解集为()A・B・C・D・10.已知等差数列的前项和为,且,则()A・2B・3C・4D・511.已知三棱柱的侧棱垂直于底面,该棱柱的体
5、积为,,,,若在该三棱柱内部有一个球,则此球表面积的最大值为()B.D.9.若、是抛物线上关于直线对称的相异两点,则A.B.C.D.二•填空题13.若向量满足,且,则向量与的夹角为14.某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备。现釆用分层抽样法从全厂工人中抽取一个容量为20的样本参加新设备培训,培训结束后进行结业考试。已知各年龄段培训结业考试成绩优秀的人数如下表所示:年龄分组培训成绩优
6、秀人数[20,30)5[30,40)6[40,50)2[50,60]1若随机从年龄段[20,30)和[40,50)的参加培训工人中各抽取1人,则这两人培训结业考试成绩恰有一人优秀的概率为.14.共焦点的椭圆与双曲线的离心率分别为,若椭圆的短轴长是双曲线虚轴长的倍,则的最大值为15.若关于的方程在上有两个不同的解,其中为自然对数的底数,则实数的取值范围是・三•解答题17•在中,角所对的边分别为,且・(I)求角;(II)若,点在线段上,,,求的面积.2&为了解中学生课余观看热门综艺节目“爸爸去哪儿”是否与性别有关,某中学一研究性学习小组从该校学生中
7、随机抽取了人进行问卷调查•调查结果表明:女生中喜欢观看该节目的占女生总人数的,男生喜欢看该节目的占男生总人数的・随后,该小组采用分层抽样的方法从这份问卷中继续抽取了份进行重点分析,知道其中喜欢看该节目的有人.(I)现从重点分析的人中随机抽取了人进行现场调查,求这两人都喜欢看该节目的概率;(II)若有的把握认为“爱看该节目与性别有关”,则参与调查的总人数至少为多少?参考数据:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.828,其中.19.如图,在三棱柱ABC-中,侧面是矩形,ZBAC=90°,丄
8、BC,=AC=2AB=4,且丄.(I)求证:平面丄平面;(II)设D是的中点,判断并证明在线段上是否存在点E,使得DE〃平面.若存在,求点到平面的距离.20.已知长轴长为4的椭圆过点,点是椭圆的右焦点.(I)求椭圆方程;(II)是否在轴上的定点,使得过的直线交椭圆于两点.设点为点关于轴的对称点,且三点共线?若存在,求点坐标;若不存在,说明理由.21.已知函数在点处的切线过点.(I)求实数的值,并求出函数单调区间;(II)若整数使得在上恒成立,求的最大值.19.已知曲线,直线.(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与
9、夹角为的直线,交于点,求的最大值与最小值.20.已知函数.(【)若,解不等式;(II)若存在,使得不等式成立,求实数的取值范围.高三模拟试卷答案.A解:N={(x,y)
10、x2+y2=0,xGR,yGR},化,则MUN=M,故选A。1.C解:,.I,的虚部为,故选C。2.D解:①对都有,・••错误;②当时,,••・错误;③当时,,•:错误;④;而当时,成立,不成立,正确。3.A解:第一次进入循环体时;第二次进入循环时;第三次进入循环时,第四次进入循环时,故此时输出,故选A。4.D解:,,,・•・,故选Do5.B解:作平面区域,易知,故选B。1.A
11、【解析】由三视图知,商鞅铜方升由一圆柱和一长方体组合而成.由题意得:则,故选A。2.B解:由,且的最小值为可知:,二,又,贝U,I,・••,故可求得的