欢迎来到天天文库
浏览记录
ID:42835744
大小:52.00 KB
页数:4页
时间:2019-09-23
《二次函数中的利润问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、22.3二次函数中的利润问题教学目标1.会求二次函数y=ax2+bx+c的最小(大)值.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.3.根据不同条件设自变量x求二次函数的关系式.教学重点1.根据不同条件设自变量x求二次函数的关系式.2.求二次函数y=ax2+bx+c的最小(大)值.教学难点将实际问题转化成二次函数问题.教学过程一、导入新课二次函数y=ax2+bx+c(a≠0)的性质:顶点式,对称轴和顶点坐标公式:w利润=售价-进价.w总利润=每件利润×销售数量.二、探究新知1、日用品何时获得最大利润w1.某商店购进一批单价为
2、20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?w设销售价为x元(x≥30元),利润为y元,则w探究2:某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?教师引导学生阅读问题,理清自变量和变量.在这个探究中,某商品调整,销量会随之变化.调整的价格包括涨价和降价两种情况.(1)我
3、们先看涨价的情况.设每件涨价x元,每星期则少卖l0x件,实际卖出(300-l0x)件,销售额为(60+x)(300-l0x)元,买进商品需付40(300-10x)元.因此,所得利润y=(60+x)(300-l0x)一40(300-l0x),即y=-l0x2+100x+6000.列出函数解析式后,教师引导学生怎样确定x的取值范围呢?由300-l0x≥0,得x≤30.再由x≥0,得0≤x≤30.根据上面的函数,可知:当x=5时,y最大,也就是说,在涨价的情况下,涨价5元,即定价65元时,利润最大,最大利润是6250元.(2)我们再看降价的情况.设每件降价x元,每星期则多卖
4、20x件,实际卖出(300+20x)件,销售额为(60-x)(300+20x)元,买进商品需付40(300+20x)元.因此,所得利润y=(60-x)(300+20x)-40(300+20x),即y=-20x2+100x+6000.怎样确定x的取值范围呢?由降价后的定价(60-x)元,不高于现价60元,不低于进价40元可得0≤x≤20.当x=2.5时,y最大,也就是说,在降价的情况下,降价2.5元,即定价57.5元时,利润最大,最大利润是6125元.由(1)(2)的讨论及现在的销售状况,你知道应如何定价能使利润最大了吗?学生最后的出答案:综合涨价和降价两种情况及现在的
5、销售状况可知,定价65元时,利润最大.解决这类题目的一般步骤(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.三、巩固练习3、旅行社何时营业额最大某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?4、直击中考(2010·荆门中考)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是50
6、0件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)四、小结(1)这节课学习了用什么知识解决哪类问题?(2)解决问题的一般步骤是什么?应注意哪些问题?(3)你学到了哪些思考问题的方法?
此文档下载收益归作者所有