函数零点问题中参数范围的求解

函数零点问题中参数范围的求解

ID:42761875

大小:130.29 KB

页数:5页

时间:2019-09-21

函数零点问题中参数范围的求解_第1页
函数零点问题中参数范围的求解_第2页
函数零点问题中参数范围的求解_第3页
函数零点问题中参数范围的求解_第4页
函数零点问题中参数范围的求解_第5页
资源描述:

《函数零点问题中参数范围的求解》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、在函数零点问题中求解参数范围江山中学杨作义王芳根据函数的零点情况,讨论参数的范围”是高考考查的重点和难点.对于这类问题,我们可以利用零点定理、数形结合思想、函数单调性与参数分离思想来求解.一、利用零点定理求解参数范围如果函数y=/(x)在[a,b]上连续且满足f(a)•.f(b)<0,则y=/(x)在区间(□")上至少存在一个零点,即存在cw(d,Z?),使得/(c)=0.这就是零点定理.对于高中阶段常遇到的问题:“已知连续函数歹=/(兀)在[⑦列上单调,且在区间«")上存在一个零点,求参数的范

2、围”可用f(a)-f(b)<0求解.例1[2012年高考数学天津卷(理科)第4题改编]已知函数/(x)=2”+/—a(awR)在区间(0,1)内存在一个零点,则实数Q的取值范围是.解:因为函数/(兀)在区间(0,1)内存在一个零点,故/(0)-/(1)<0,整理得(1—a)(3—q)<0,解得l

3、(X)的零点.因此对于含参数函数f(x)=g(x)-h(x^我们可以利用数形结合思想作出g(xh(x)的图彖,并根据两图彖的交点情况求解参数范围.把原函数转化为两个函数时,要注意转化得到的两个函数的图象应该是比较容易画出的.在作图时,要利用函数奇偶性、单调性等性质,并标注出函数图象上的零点、最高点、最低点等一些特殊点,尽量把图象画准确,避免误判.x>2;例2[2011年高考数学北京卷(理科)第13题]已知函数/(劝彳兀若关于无的方程f(x)=k(x-1)3,x<2・有两个不等的实根,则实数R的

4、取值范国是・2解:当兀n2时,f(x)=一,此时f(x)在[2,4W)上单调递减,且01。如图1所示作出函数丿二/(兀)的图象,由图可得/(兀)在(-oo,2)±单调递增且/(x)<1,/(兀)在[2,+oo)上单调递减且0

5、参数的范围”是高考考查的重点和难点.对于这类问题,我们可以利用零点定理、数形结合思想、函数单调性与参数分离思想来求解.一、利用零点定理求解参数范围如果函数y=/(x)在[a,b]上连续且满足f(a)•.f(b)<0,则y=/(x)在区间(□")上至少存在一个零点,即存在cw(d,Z?),使得/(c)=0.这就是零点定理.对于高中阶段常遇到的问题:“已知连续函数歹=/(兀)在[⑦列上单调,且在区间«")上存在一个零点,求参数的范围”可用f(a)-f(b)<0求解.例1[2012年高考数学天津卷(理

6、科)第4题改编]已知函数/(x)=2”+/—a(awR)在区间(0,1)内存在一个零点,则实数Q的取值范围是.解:因为函数/(兀)在区间(0,1)内存在一个零点,故/(0)-/(1)<0,整理得(1—a)(3—q)<0,解得l

7、用数形结合思想作出g(xh(x)的图彖,并根据两图彖的交点情况求解参数范围.把原函数转化为两个函数时,要注意转化得到的两个函数的图象应该是比较容易画出的.在作图时,要利用函数奇偶性、单调性等性质,并标注出函数图象上的零点、最高点、最低点等一些特殊点,尽量把图象画准确,避免误判.x>2;例2[2011年高考数学北京卷(理科)第13题]已知函数/(劝彳兀若关于无的方程f(x)=k(x-1)3,x<2・有两个不等的实根,则实数R的取值范国是・2解:当兀n2时,f(x)=一,此时f(x)在[2,4W)

8、上单调递减,且01。如图1所示作出函数丿二/(兀)的图象,由图可得/(兀)在(-oo,2)±单调递增且/(x)<1,/(兀)在[2,+oo)上单调递减且0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。