数列求前n项和的基本方法和技巧资料

数列求前n项和的基本方法和技巧资料

ID:42515828

大小:227.00 KB

页数:6页

时间:2019-09-16

数列求前n项和的基本方法和技巧资料_第1页
数列求前n项和的基本方法和技巧资料_第2页
数列求前n项和的基本方法和技巧资料_第3页
数列求前n项和的基本方法和技巧资料_第4页
数列求前n项和的基本方法和技巧资料_第5页
资源描述:

《数列求前n项和的基本方法和技巧资料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:2、等比数列求和公式:3、4、5、[例1]已知,求的前n项和.[例2]设Sn=1+2+3+…+n,n∈N*,求的最大值.二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.[例3]求和:①∴[例4]求数列前n项的和.∴6三、倒序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将

2、一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.[例5]求证:证明:设…………………………..①把①式右边倒转过来得(反序)又由可得…………..……..②①+②得(反序相加)∴[例6]求的值∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,=(分组求和)当时,=6[例8]求数列{n(n+1)(2n+1)}的前n项和.五、裂

3、项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9]求数列的前n项和.[例10]在数列{an}中,,又,求数列{bn}的前n项的和.[例11]求证:解:设6∵(裂项)∴(裂项求和)====∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.[例12]求cos1°+cos2°+

4、cos3°+···+cos178°+cos179°的值.解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°∵(找特殊性质项)∴Sn=(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{an}:,求S2002.解:设S2002=由可得……∵(找特殊性质项)∴ S2002=(合并求和)==6==5[例14]在各项均为正数的等比数列中,若的值.解:设由等比数列的性质(找

5、特殊性质项)和对数的运算性质得(合并求和)===10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求之和.解:由于(找通项及特征)∴=(分组求和)===[例16]已知数列{an}:的值.解:∵(找通项及特征)6=(设制分组)=(裂项)∴(分组、裂项求和)==1.设,求证:。2.求和:3、求数列前n项和4.设数列为求此数列前项的和。5、求数列前n项和6.已知数列中,是它的前项和,并且,(1)设,求证数列是等比数列;(2

6、)设,求证数列是等差数列。7、设是由正数组成的等比数列,Sn是其前n项和.证明:。8.已知数列,求前n项和。9.求和10.已知数列。11.已知数列的通项,求其前项和.6

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。