欢迎来到天天文库
浏览记录
ID:40847609
大小:218.10 KB
页数:15页
时间:2019-08-08
《闭区间上连续函数的性质(I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、闭区间上连续函数的性质闭区间上的连续函数有着十分优良的性质,这些性质在函数的理论分析、研究中有着重大的价值,起着十分重要的作用。下面我们就不加证明地给出这些结论,好在这些结论在几何意义是比较明显的。一、最大值和最小值定理定义:例如,定理1(最大值和最小值定理)在闭区间上连续的函数一定有最大值和最小值.注意:1.若区间是开区间,定理不一定成立;2.若区间内有间断点,定理不一定成立.定理2(有界性定理)在闭区间上连续的函数一定在该区间上有界.证二、介值定理定义:几何解释:证由零点定理,abABMmC几何解释:例1证由零点定理,推论
2、在闭区间上连续的函数必取得介于最大值与最小值之间的任何值.例2证由零点定理,例3证由零点定理知总之注①方程f(x)=0的根函数f(x)的零点②有关闭区间上连续函数命题的证明方法10直接法:先利用最值定理,再利用介值定理20间接法(辅助函数法):先作辅助函数,再利用零点定理辅助函数的作法(1)将结论中的ξ(或x0或c)改写成x(2)移项使右边为0,令左边的式子为F(x)则F(x)即为所求区间一般在题设中或要证明的结论中已经给出,余下只须验证F(x)在所讨论的区间上连续,再比较一下两个端点处的函数值的符号,或指出要证的值介于F(x
3、)在所论闭区间上的最大值与最小值之间。三、小结四个定理有界性定理;最值定理;介值定理;根的存在性定理.注意1.闭区间;2.连续函数.这两点不满足上述定理不一定成立.解题思路1.直接法:先利用最值定理,再利用介值定理;2.辅助函数法:先作辅助函数F(x),再利用零点定理;思考题下述命题是否正确?思考题解答不正确.例函数
此文档下载收益归作者所有