欢迎来到天天文库
浏览记录
ID:39859819
大小:338.51 KB
页数:23页
时间:2019-07-13
《机械原理课程设计-连杆机构B4完美版.》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、课程设计书机械原理课程设计任务书题目:连杆机构设计B4姓名:戴新吉班级:机械设计制造及其自动化2011级3班设计参数转角关系的期望函数连架杆转角范围计算间隔设计计算编程确定:a,b,c,d四杆的长度,以及在一个工作循环内每一计算间隔的转角偏差值60°85°0.5°y=㏑x(1≦x≦2)设计要求:1.用解析法按计算间隔进行设计计算;2.绘制3号图纸1张,包括:(1)机构运动简图;(2)期望函数与机构实现函数在计算点处的对比表;(3)根据对比表绘制期望函数与机构实现函数的位移对比图;3.设计说明书一份;4.要求设计步骤清楚,计算准确。说明书规范。作图要符合国家标。按时独立完成任务。23课程设计
2、书目录第1节平面四杆机构设计31.1连杆机构设计的基本问题31.2作图法设计四杆机构31.3作图法设计四杆机构的特点31.4解析法设计四杆机构31.5解析法设计四杆机构的特点3第2节设计介绍52.1按预定的两连架杆对应位置设计原理52.2按期望函数设计6第3节连杆机构设计83.1连杆机构设计83.2变量和函数与转角之间的比例尺83.3确定结点值83.4确定初始角、93.5杆长比m,n,l的确定133.6检查偏差值133.7杆长的确定133.8连架杆在各位置的再现函数和期望函数最小差值的确定15总结18参考文献19附录2023课程设计书第1节平面四杆机构设计1.1连杆机构设计的基本问题连杆机
3、构设计的基本问题是根据给定的要求选定机构的型式,确定各构件的尺寸,同时还要满足结构条件(如要求存在曲柄、杆长比恰当等)、动力条件(如适当的传动角等)和运动连续条件等。根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三类问题:(1)预定的连杆位置要求;(2)满足预定的运动规律要求;(3)满足预定的轨迹要求;连杆设计的方法有:解析法、作图法和实验法。1.2作图法设计四杆机构对于四杆机构来说,当其铰链中心位置确定后,各杆的长度也就确定了。用作图法进行设计,就是利用各铰链之间相对运动的几何关系,通过作图确定各铰链的位置,从而定出各杆的长度。1.3作图法设
4、计四杆机构的特点图解法的特点是直观、简单、快捷,对三个设计位置以下的设计是十分方便的,其设计精度也能满足工作的要求,并能为解析法精确求解和优化设计提供初始值。23课程设计书根据设计要求的不同分为四种情况:(1)按连杆预定的位置设计四杆机构;(2)按两连架杆预定的对应角位移设计四杆机构;(3)按预定的轨迹设计四杆机构;(4)按给定的急回要求设计四杆机构。1.4解析法设计四杆机构在用解析法设计四杆机构时,首先需建立包含机构各尺度参数和运动变量在内的解析式,然后根据已知的运动变量求机构的尺度参数。1.5解析法设计四杆机构的特点解析法的特点是可借助于计算器或计算机求解,计算精度高,是英语对三个或三
5、个以上位置设计的求解,尤其是对机构进行优化设计和精度分析十分有利。现有三种不同的设计要求,分别是:(1)按连杆预定的连杆位置设计四杆机构(2)按预定的运动轨迹设计四杆机构(3)按预定的运动规律设计四杆机构1)按预定的两连架杆对应位置设计2)按期望函数设计本文详细阐述了解析法设计丝杆机构中按期望函数设计的原理、方法及过程。23课程设计书第2节设计介绍2.1按预定的两连架杆对应位置设计原理如下图所示:图2-1(2-1)设要求从动件3与主动件1的转角之间满足一系列的对应位置关系,即=i=1,2,…,n,其函数的运动变量为机构的转角,由设计要求知、为已知条件,仅为未知。又因为机构按比例放大或缩小,
6、不会改变各机构的相对角度关系,故设计变量应该为各构件的相对长度,如取d/a=1,b/a=lc/a=m,d/a=n。故设计变量l、m、n以及、的计量起始角、共五个。如图2-1所示建立坐标系Oxy,并把各杆矢量向坐标轴投影,可得23课程设计书为消去未知角,将式2—1两端各自平方后相加,经整理可得(2-2)令=m,=-m/n,=,则上式可简化为:式2-2中包含5个待定参数、、、、及,故四杆机构最多可以按两连架杆的5个对应位置精度求解。当两连架杆的对应位置数时,一般不能求得精确解,此时可用最小二乘法等进行近似设计。当要求的两连架杆对应位置数时,可预选个尺度参数,此时有无穷多解。2.2按期望函数设计
7、如上图所示,设要求设计四杆机构两连架杆转角之间实现的函数关系(成为期望函数),由于连架杆机构的待定参数较少,故一般不能准确实现该期望函数。设实际实现的函数为月(成为再现函数),再现函数与期望函数一般是不一致的。设计时应该使机构的再现函数尽可能逼近所要求的期望函数。具体作法是:在给定的自变量x的变化区间到内的某点上,使再现函数与期望函数的值相等。从几何意义上与两函数曲线在某些点相交。23课程设计书这些点称为插值结点。显然在
此文档下载收益归作者所有