资源描述:
《高一数学对数函数及其性质课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、对数函数及其性质(一)对数函数的概念与图象主讲人:王桂强临清实验高级中学思考考古学家一般通过提取附着在出土文物、古遗址上死亡的残留物,利用估计出土文物或古遗址的年代.t能不能看成是P的函数?根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系,都有唯一确定的年代t与它对应,所以,t是P的函数.一般地,函数y=logax(a>0,且a≠1)叫做对数函数.其中x是自变量,函数的定义域是(0,+∞).对数函数的定义:注意:1)对数函数定义的严格形式;,且2)对数函数对底数的限制条件:在同一坐标系中用描点法画出对数
2、函数的图象。作图步骤:①列表,②描点,③用平滑曲线连接。探究:对数函数:y=logax(a>0,且a≠1)图象与性质X1/41/2124…y=log2x-2-1012…列表描点作y=log2x图象连线21-1-21240yx3探究:对数函数:y=logax(a>0,且a≠1)图象与性质列表描点连线21-1-21240yx3x1/41/2124210-1-2-2-1012思考这两个函数的图象有什么关系呢?关于x轴对称探究:对数函数:y=logax(a>0,且a≠1)图象与性质………………图象特征代数表述定义域:(0,
3、+∞)值域:R增函数在(0,+∞)上是:探索发现:认真观察函数y=log2x的图象填写下表图象位于y轴右方图象向上、向下无限延伸自左向右看图象逐渐上升探究:对数函数:y=logax(a>0,且a≠1)图象与性质21-1-21240yx3图象特征函数性质定义域:(0,+∞)值域:R减函数在(0,+∞)上是:图象位于y轴右方图象向上、向下无限延伸自左向右看图象逐渐下降探究:对数函数:y=logax(a>0,且a≠1)图象与性质探索发现:认真观察函数的图象填写下表21-1-21240yx3探究:对数函数:y=logax(
4、a>0,且a≠1)图象与性质对数函数的图象。猜猜:21-1-21240yx3图象性质a>10<a<1定义域:值域:过定点:在(0,+∞)上是:在(0,+∞)上是对数函数y=logax(a>0,且a≠1)的图象与性质(0,+∞)R(1,0),即当x=1时,y=0增函数减函数yXOx=1(1,0)yXOx=1(1,0)例1求下列函数的定义域:(1)(2)讲解范例解:解:由得∴函数的定义域是由得∴函数的定义域是练习1.求下列函数的定义域:(1)(2)比较下列各组中,两个值的大小:(1)log23.4与log28.5∴lo
5、g23.41,∴函数在区间(0,+∞)上是增函数;∵3.4<8.5我练练我掌握比较下列各组中,两个值的大小:(2)log0.31.8与log0.32.7解:考察函数y=log0.3x,∵a=0.3<1,∴函数在区间(0,+∞)上是减函数;∵1.8<2.7∴log0.31.8>log0.32.7我练练我掌握小结比较下列各组中,两个值的大小:(1)log23.4与log28.5(2)log0.31.8与log0.32.7小结比较两个同底对数值的大小时:1.观察底数是
6、大于1还是小于1;(a>1时为增函数01比较下列各组中,两个值的大小:(3)loga5.1与loga5.9解:①若a>1则函数在区间(0,+∞)上是增函数;∵5.1<5.9∴loga5.1loga5.9我练练我掌握你能口答吗?变一变还能口答吗?<,则m___n;则m___n.><
7、>思考:对数函数:y=logax(a>0,且a≠1)图象随着a的取值变化图象如何变化?有规律吗?21-1-21240yx3规律:在x轴上方图象自左向右底数越来越大!x1.记住对数函数的定义;2.会画对数函数的图象。知识与技能目标:过程与方法目标:情感态度价值观目标:经历函数和的画法,观察其图象特征并用代数语言进行描述得出函数性质,进一步探究出函数的图象与性质.通过本节课的学习增强学生的数形结合思想.作业:P74.习题2.27,8谢谢合作!