欢迎来到天天文库
浏览记录
ID:38249182
大小:24.50 KB
页数:5页
时间:2019-06-06
《带余数的除法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第四讲带余数的除法 前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。 一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r。 当r=0时,我们称a能被b整除。 当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。例1一个两位数去除251,得到的余数是41.求这个两位数。分析这是一
2、道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。 解:∵被除数÷除数=商…余数, 即被除数=除数×商+余数, ∴251=除数×商+41, 251-41=除数×商, ∴210=除数×商。 ∵210=2×3×5×7, ∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。例2用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少? 解:∵被除数=
3、除数×商+余数, 即被除数=除数×40+16。 由题意可知:被除数+除数=933-40-16=877, ∴(除数×40+16)+除数=877, ∴除数×41=877-16, 除数=861÷41, 除数=21, ∴被除数=21×40+16=856。 答:被除数是856,除数是21。例3某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几? 解:十月份共有31天,每周共有7天, ∵31=7×4+3, ∴根据题意可知:有5天的星期数必然是星期四、星期五和星期六。 ∴这年的10月1日是星期四。例43
4、月18日是星期日,从3月17日作为第一天开始往回数(即3月16日(第二天),15日(第三天),…)的第1993天是星期几? 解:每周有7天,1993÷7=284(周)…5(天), 从星期日往回数5天是星期二,所以第1993天必是星期二.例5一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。 这是一道古算题.它早在《孙子算经》中记有:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 关于这道题的解法,在明朝就流传着一首解题之歌:“三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零
5、五便得知.”意思是,用除以3的余数乘以70,用除以5的余数乘以21,用除以7的余数乘以15,再把三个乘积相加.如果这三个数的和大于105,那么就减去105,直至小于105为止.这样就可以得到满足条件的解.其解法如下: 方法1:2×70+3×21+2×15=233 233-105×2=23 符合条件的最小自然数是23。例5的解答方法不仅就这一种,还可以这样解: 方法2:[3,7]+2=23 23除以5恰好余3。 所以,符合条件的最小自然数是23。 方法2的思路是什么呢?让我们再来看下面两道例题。例6一个数除以5余3
6、,除以6余4,除以7余1,求适合条件的最小的自然数。分析“除以5余3”即“加2后被5整除”,同样“除以6余4”即“加2后被6整除”。 解:[5,6]-2=28,即28适合前两个条件。 想:28+[5,6]×?之后能满足“7除余1”的条件? 28+[5,6]×4=148,148=21×7+1, 又148<210=[5,6,7] 所以,适合条件的最小的自然数是148。例7一个数除以3余2,除以5余3,除以7余4,求符合条件的最小自然数。 解:想:2+3×?之后能满足“5除余3”的条件? 2+3×2=8。 再想:8+
7、[3,5]×?之后能满足“7除余4”的条件? 8+[3,5]×3=53。 ∴符合条件的最小的自然数是53。 归纳以上两例题的解法为:逐步满足条件法.当找到满足某个条件的数后,为了再满足另一个条件,需做数的调整,调整时注意要加上已满足条件中除数的倍数。 解这类题目还有其他方法,将会在有关“同余”部分讲到。例8一个布袋中装有小球若干个.如果每次取3个,最后剩1个;如果每次取5个或7个,最后都剩2个.布袋中至少有小球多少个? 解:2+[5,7]×1=37(个) ∵37除以3余1,除以5余2,除以7余2, ∴布袋中至少有
8、小球37个。例969、90和125被某个正整数N除时,余数相同,试求N的最大值。分析在解答此题之前,我们先来看下面的例子: 15除以2余1,19除以2余1, 即15和19被2除余数相同(余数都是1)。 但是19-15能被2整除. 由此我们可以得到这样的结论:如果两个整
此文档下载收益归作者所有