欢迎来到天天文库
浏览记录
ID:37024449
大小:420.00 KB
页数:16页
时间:2019-05-15
《2007年高考数学(理科)试卷及答案(湖北卷)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2007年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)本试卷共4页,满分150分,考试时间120分钟。注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。4.考试结束,请将本试题卷
2、和答题卡一并上交。一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的1.如果的展开式中含有非零常数项,则正整数n的最小值为A.3B.5C.6D.102.将的图象按向量a=平移,则平移后所得图象的解析式为A.B.C.D.3.设P和Q是两个集合,定义集合P-Q=,如果P={x
3、log2x<1},Q={x
4、
5、x-2
6、<1},那么P-Q等于A.{x
7、08、09、1≤x<2}D.{x10、2≤x<3}4.平面α外有两条直线m和n,如果m和n11、在平面α内的射影分别是m'和n',给出下列四个命题:①m'⊥n'm⊥n②m⊥nm'⊥n'③m'与n'相交m与n相交或重合④m'与n'平行m与n平行或重合其中不正确的命题个数是A.1B.2C.3D.45.已知p和q是两个不相等的正整数,且q≥2,则A.0B.1C.D.6.若数列{an}满足N*),则称{an}为“等方比数列”甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件12、7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于A.-1B.1C.D.8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是A.2B.3C.4D.59.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是A.B.C.D.10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那13、么这样的直线共有A.60条B.66条C.72条D.78条二、填空题:本大题共5小题,每小题5分,共25分。11.已知函数y=2x-a的反函数是y=bx+3,则a=;b=。12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是。(写出一个有序实数对即可)13.设变量x,y满足约束条件则目标函数2x+y的最小值为。14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率。(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过14、程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为。(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室。三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。16.(本小题满分12分)已知△ABC的面积为3,15、且满足0≤≤6,设和的夹角为θ。(Ⅰ)求θ的取值范围;(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。17.(本小题满分12分)分组频数4253029102合计100在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概率是多少;(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。18.(本小题满16、分12分)如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。(Ⅰ)求证:平面VAB⊥平面VCD;(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。19.(本小题满分12分)在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值
8、09、1≤x<2}D.{x10、2≤x<3}4.平面α外有两条直线m和n,如果m和n11、在平面α内的射影分别是m'和n',给出下列四个命题:①m'⊥n'm⊥n②m⊥nm'⊥n'③m'与n'相交m与n相交或重合④m'与n'平行m与n平行或重合其中不正确的命题个数是A.1B.2C.3D.45.已知p和q是两个不相等的正整数,且q≥2,则A.0B.1C.D.6.若数列{an}满足N*),则称{an}为“等方比数列”甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件12、7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于A.-1B.1C.D.8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是A.2B.3C.4D.59.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是A.B.C.D.10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那13、么这样的直线共有A.60条B.66条C.72条D.78条二、填空题:本大题共5小题,每小题5分,共25分。11.已知函数y=2x-a的反函数是y=bx+3,则a=;b=。12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是。(写出一个有序实数对即可)13.设变量x,y满足约束条件则目标函数2x+y的最小值为。14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率。(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过14、程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为。(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室。三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。16.(本小题满分12分)已知△ABC的面积为3,15、且满足0≤≤6,设和的夹角为θ。(Ⅰ)求θ的取值范围;(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。17.(本小题满分12分)分组频数4253029102合计100在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概率是多少;(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。18.(本小题满16、分12分)如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。(Ⅰ)求证:平面VAB⊥平面VCD;(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。19.(本小题满分12分)在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值
9、1≤x<2}D.{x
10、2≤x<3}4.平面α外有两条直线m和n,如果m和n
11、在平面α内的射影分别是m'和n',给出下列四个命题:①m'⊥n'm⊥n②m⊥nm'⊥n'③m'与n'相交m与n相交或重合④m'与n'平行m与n平行或重合其中不正确的命题个数是A.1B.2C.3D.45.已知p和q是两个不相等的正整数,且q≥2,则A.0B.1C.D.6.若数列{an}满足N*),则称{an}为“等方比数列”甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件
12、7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于A.-1B.1C.D.8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是A.2B.3C.4D.59.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是A.B.C.D.10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那
13、么这样的直线共有A.60条B.66条C.72条D.78条二、填空题:本大题共5小题,每小题5分,共25分。11.已知函数y=2x-a的反函数是y=bx+3,则a=;b=。12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是。(写出一个有序实数对即可)13.设变量x,y满足约束条件则目标函数2x+y的最小值为。14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率。(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过
14、程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为。(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室。三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。16.(本小题满分12分)已知△ABC的面积为3,
15、且满足0≤≤6,设和的夹角为θ。(Ⅰ)求θ的取值范围;(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。17.(本小题满分12分)分组频数4253029102合计100在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概率是多少;(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。18.(本小题满
16、分12分)如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。(Ⅰ)求证:平面VAB⊥平面VCD;(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。19.(本小题满分12分)在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值
此文档下载收益归作者所有