ChapterEnsembleMLPClassifierDesignSurrey章合奏MLP分类器设计——萨里

ChapterEnsembleMLPClassifierDesignSurrey章合奏MLP分类器设计——萨里

ID:36471268

大小:531.79 KB

页数:16页

时间:2019-05-11

ChapterEnsembleMLPClassifierDesignSurrey章合奏MLP分类器设计——萨里_第1页
ChapterEnsembleMLPClassifierDesignSurrey章合奏MLP分类器设计——萨里_第2页
ChapterEnsembleMLPClassifierDesignSurrey章合奏MLP分类器设计——萨里_第3页
ChapterEnsembleMLPClassifierDesignSurrey章合奏MLP分类器设计——萨里_第4页
ChapterEnsembleMLPClassifierDesignSurrey章合奏MLP分类器设计——萨里_第5页
资源描述:

《ChapterEnsembleMLPClassifierDesignSurrey章合奏MLP分类器设计——萨里》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter:EnsembleMLPClassifierDesignTerryWindeattCentreforVision,SpeechandSignalProc.,DepartmentofElectronicEngineering,UniversityofSurrey,Guildford,Surrey,UnitedKingdomGU27XHt.windeatt@surrey.ac.ukAbstract.Multi-layerperceptrons(MLP)makepowerfulclassifiersthatmayprovidesuperiorperformancecomparedw

2、ithotherclassifiers,butareoftencriticizedforthenumberoffreeparameters.Mostcommonly,parametersaresetwiththehelpofeitheravalidationsetorcross-validationtechniques,butthereisnoguaranteethatapseudo-testsetisrepresentative.FurtherdifficultieswithMLPsincludelongtrainingtimesandlocalminima.Inthischapter,

3、anensembleofMLPclassifiersisproposedtosolvetheseproblems.Parameterselectionforoptimalperformanceisperformedusingmeasuresthatcorrelatewellwithgeneralisationerror.1IntroductionThetopicofthischapterconcernssolvingproblemsinpatternrecognitionusingacombinationofneuralnetworkclassifiers.Patternclassific

4、ationinvolvesassignmentofanobjecttooneofseveralpre-specifiedcategoriesorclasses,andisakeycomponentinmanydatainterpretationactivities.Herewefocusonclassifiersthatlearnfromexamples,anditisassumedthateachexamplepatternisrepresentedbyasetofnumbers,whichareknownasthepatternfeatures.Inthecaseoffacerecog

5、nition(Section5),thesefeaturesconsistofnumbersrepresentingdifferentaspectsoffacialfeatures.Inordertodesignalearningsystemitiscustomarytodividetheexamplepatternsintotwosets,atrainingsettodesigntheclassifierandatestset,whichissubsequentlyusedtopredicttheperformancewhenpreviouslyunseenexamplesareappl

6、ied.Aproblemariseswhentherearemanyfeaturesandrelativelyfewtrainingexamples,andtheclassifiercanlearnthetrainingsettoowell,knownasover-fittingsothatperformanceonthetestsetdegrades.Automatingtheclassificationtasktoachieveoptimalperformancehasbeenstudiedinthetraditionalfieldsofpatternrecognition,machi

7、nelearningandneuralnetworksaswellasnewerdisciplinessuchasdatafusion,dataminingandknowledgediscovery.Traditionally,theapproachthathasbeenusedinthedesignofpatternclassificationsystemsistoexperimentallyassesstheperf

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。